{"dp_type": "Project", "free_text": "Peracarida"}
[{"awards": "2138993 Gerken, Sarah; 2138994 Kocot, Kevin", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 20 Sep 2022 00:00:00 GMT", "description": "Part I: General description Cumaceans are small crustaceans, commonly known as comma shrimp, that live in muddy or sandy bottom environments in marine waters. Cumaceans are important for the diet of fish, birds, and even grey whales. This research program is assessing cumacean diversity and adaptation in different regions of Antarctica and evaluate this organisms adaptations using molecular methods to a changing Antarctic region. The research stands to significantly advance understanding of invertebrate adaptations to cold, stable habitats and responses to changes in those habitats. In addition, this project is advancing understanding of the biology of Cumacea, a globally diverse and biologically important group of animals. Targeted training of early career students and professionals in cumacean biology, molecular techniques, and bioinformatics is included as part of the program. A workshop at the Los Angeles County Natural History Museum will also train 10 additional graduate students, with a focus on training for underrepresented groups. Project outreach also includes social media, outreach to schools in very diverse school districts in Anchorage, AK, and creation of museum events and an exhibit at the Alabama Museum of Natural History. Finally, engagement by the team in activities related to the National Ocean Science Bowl promotes broad engagement with high school students for Antarctic science learning. Part II: Technical Description The overarching goal of this research is to use cumaceans as a model system to explore invertebrate adaptations to the changing Antarctic. This project is leveraging integrative taxonomy, functional, comparative and evolutionary genomics, and phylogenetic comparative methods to understand the true diversity of Cumacea in the Antarctic. The team is identifying genes and gene families experiencing expansions, selection, or significant differential expression, generating a broadly sampled and robust phylogenetic framework for the Antarctic Cumacea based on transcriptomes and genomes, and exploring rates and timing of diversification. The project is providing important information related to gene gain/loss, positive selection, and differential gene expression as a function of adaptation of organisms to Antarctic habitats. Phylogenomic analyses is providing a robust phylogenetic framework for understudied Southern Ocean Cumacea. At the start of this project, only one Antarctic transcriptome was published for this organism. This project is generating sequenced genomes from 8 species, about 250 transcriptomes from about 70 species, and approximately 470 COI and 16S amplicon barcodes from about 100 species. Curated morphological reference collections will be deposited at the Smithsonian, Los Angeles County Natural History Museum and in the New Zealand National Water and Atmospheric Research collection at Greta Point to assist future researchers in identification of Antarctic cumaceans. Beyond the immediate scope of the current project, the genomic resources will be able to be leveraged by members of the polar biology and invertebrate zoology communities for diverse other uses ranging from PCR primer development to inference of ancestral population sizes. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Benthic; SHIPS; Antarctic Peninsula; Antarctica; Biodiversity; Peracarida; ARTHROPODS; East Antarctica; Chile; BENTHIC; Cumacea; Ross Sea; Crustacea", "locations": "Antarctica; East Antarctica; Chile; Ross Sea; Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Polar Special Initiatives; Antarctic Organisms and Ecosystems", "paleo_time": "NOT APPLICABLE", "persons": "Gerken, Sarah; Kocot, Kevin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Collaborative Research: ANT LIA: Cumacean -Omics to Measure Mode of Adaptation to Antarctica (COMMAA)", "uid": "p0010379", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |
---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: ANT LIA: Cumacean -Omics to Measure Mode of Adaptation to Antarctica (COMMAA)
|
2138993 2138994 |
2022-09-20 | Gerken, Sarah; Kocot, Kevin | No dataset link provided | Part I: General description Cumaceans are small crustaceans, commonly known as comma shrimp, that live in muddy or sandy bottom environments in marine waters. Cumaceans are important for the diet of fish, birds, and even grey whales. This research program is assessing cumacean diversity and adaptation in different regions of Antarctica and evaluate this organisms adaptations using molecular methods to a changing Antarctic region. The research stands to significantly advance understanding of invertebrate adaptations to cold, stable habitats and responses to changes in those habitats. In addition, this project is advancing understanding of the biology of Cumacea, a globally diverse and biologically important group of animals. Targeted training of early career students and professionals in cumacean biology, molecular techniques, and bioinformatics is included as part of the program. A workshop at the Los Angeles County Natural History Museum will also train 10 additional graduate students, with a focus on training for underrepresented groups. Project outreach also includes social media, outreach to schools in very diverse school districts in Anchorage, AK, and creation of museum events and an exhibit at the Alabama Museum of Natural History. Finally, engagement by the team in activities related to the National Ocean Science Bowl promotes broad engagement with high school students for Antarctic science learning. Part II: Technical Description The overarching goal of this research is to use cumaceans as a model system to explore invertebrate adaptations to the changing Antarctic. This project is leveraging integrative taxonomy, functional, comparative and evolutionary genomics, and phylogenetic comparative methods to understand the true diversity of Cumacea in the Antarctic. The team is identifying genes and gene families experiencing expansions, selection, or significant differential expression, generating a broadly sampled and robust phylogenetic framework for the Antarctic Cumacea based on transcriptomes and genomes, and exploring rates and timing of diversification. The project is providing important information related to gene gain/loss, positive selection, and differential gene expression as a function of adaptation of organisms to Antarctic habitats. Phylogenomic analyses is providing a robust phylogenetic framework for understudied Southern Ocean Cumacea. At the start of this project, only one Antarctic transcriptome was published for this organism. This project is generating sequenced genomes from 8 species, about 250 transcriptomes from about 70 species, and approximately 470 COI and 16S amplicon barcodes from about 100 species. Curated morphological reference collections will be deposited at the Smithsonian, Los Angeles County Natural History Museum and in the New Zealand National Water and Atmospheric Research collection at Greta Point to assist future researchers in identification of Antarctic cumaceans. Beyond the immediate scope of the current project, the genomic resources will be able to be leveraged by members of the polar biology and invertebrate zoology communities for diverse other uses ranging from PCR primer development to inference of ancestral population sizes. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false |