{"dp_type": "Project", "free_text": "PLATE BOUNDARIES"}
[{"awards": "2203487 Ben Mansour, Walid", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 06 Jun 2022 00:00:00 GMT", "description": "Non-Technical abstract The physical state of the mantle beneath the Antarctic Ice Sheet plays a key role in the interaction between the Antarctic ice cover and the solid earth, strongly influencing the glacial system\u0027s evolution. Generally, mantle temperature profiles are determined by analyzing rock samples from the mantle to determine pressure-temperature conditions, and/or by conversion of seismic velocity anomalies to temperature anomalies. However, mantle rocks have been found only in a very few places in Antarctica, and seismic anomalies reflect not only thermal anomalies but also compositional variations. In this project, the investigators will (1) use the most recent geophysical datasets sensitive to temperature and composition (high-resolution seismic velocity model, topography, satellite gravity), (2) Combine the sensitivity of these datasets in a to retrieve the most reliable model of thermal and compositional structure, (3) translate the results into 2-dimensional maps of temperature slices and the composition of iron in the mantle,(4) compare the results with results from other continents to better understand Antarctic geological history, and (5) use the new thermal model along with established rock relationships to estimate mantle viscosity. Technical abstract The thermochemical structure of the lithosphere beneath Antarctica is fundamental for understanding the geological evolution of the continent and its relationship to surrounding Gondwana continents. In addition, the thermal structure controls the solid earth response to glacial unloading, with important implications for ice sheet models and the future of the West Antarctic Ice Sheet. However, it is challenging to get an accurate picture of temperature and composition from only sparse petrological/geochemical analysis, and most previous attempts to solve this problem geophysically have relied on seismic or gravity data alone. Here, we propose to use a probabilistic joint inversion (high resolution regional seismic data, satellite gravity data, topography) and petrological modelling approach to determine the 3D thermochemical structure of the mantle. The inversion will be carried out using a Markov-chain Bayesian Monte Carlo methodology, providing quantitative estimates of uncertainties. Mapping the 3-dimensional thermochemical structure (thermal and composition) will provide a comprehensive view of the horizontal (50-100 km resolution) and vertical (from the surface down to 380 km) variations. This new model will give us the temperature variation from the surface down to 380 km and the degree of depletion of the lithospheric mantle and the sub-lithospheric mantle. This new model will also be compared to recent models of Gondwana terranes 200 Myrs to build a new model of the thermochemical evolution of the cratonic mantle. The new thermal and chemical structures can be used to better understand the geothermal heat flux beneath the ice sheet as well as improve glacial isostatic adjustment and ice sheet models. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; GRAVITY FIELD; AMD; COMPUTERS; GEOCHEMISTRY; PLATE BOUNDARIES; Amd/Us; SEISMIC SURFACE WAVES; USA/NSF; USAP-DC", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ben-Mansour, Walid; Wiens, Douglas", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Thermal and Compositional Structure of Antarctica from Probabilistic Joint Inversion of Seismic, Gravity, and Topography Data and Petrological Modelling", "uid": "p0010334", "west": -180.0}, {"awards": "1246111 Dalziel, Ian", "bounds_geometry": "POLYGON((-44 -53,-42.9 -53,-41.8 -53,-40.7 -53,-39.6 -53,-38.5 -53,-37.4 -53,-36.3 -53,-35.2 -53,-34.1 -53,-33 -53,-33 -53.4,-33 -53.8,-33 -54.2,-33 -54.6,-33 -55,-33 -55.4,-33 -55.8,-33 -56.2,-33 -56.6,-33 -57,-34.1 -57,-35.2 -57,-36.3 -57,-37.4 -57,-38.5 -57,-39.6 -57,-40.7 -57,-41.8 -57,-42.9 -57,-44 -57,-44 -56.6,-44 -56.2,-44 -55.8,-44 -55.4,-44 -55,-44 -54.6,-44 -54.2,-44 -53.8,-44 -53.4,-44 -53))", "dataset_titles": "BAS Geological Collection: Central Scotia Sea (full data link not provided); Nathaniel B Palmer NBP 1408; South Georgia: SOG1, SOG2, SOG3", "datasets": [{"dataset_uid": "200106", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Nathaniel B Palmer NBP 1408", "url": "http://www.marine-geo.org/tools/search/entry.php?id=NBP1408"}, {"dataset_uid": "200105", "doi": "", "keywords": null, "people": null, "repository": "UNAVCO", "science_program": null, "title": "South Georgia: SOG1, SOG2, SOG3", "url": "https://www.unavco.org/data/gps-gnss/gps-gnss.html"}, {"dataset_uid": "200107", "doi": "", "keywords": null, "people": null, "repository": "British Antarctic Survey", "science_program": null, "title": "BAS Geological Collection: Central Scotia Sea (full data link not provided)", "url": "https://www.bas.ac.uk/data/our-data/collections/geological-collections/"}], "date_created": "Tue, 28 Jan 2020 00:00:00 GMT", "description": "Intellectual Merit: Opening of Drake Passage and the West Scotia Sea south of Tierra del Fuego broke the final continental barrier to onset of a complete Antarctic Circumpolar Current (ACC). Initiation of the ACC has been associated in time with a major, abrupt, drop in global temperatures and the rapid expansion of the Antarctic ice sheets at 33-34 Ma. Events leading to the formation of the Drake Passage gateway are poorly known. Understanding the tectonic evolution of the floor of the Central Scotia Sea (CSS) and the North Scotia Ridge is a key to this understanding. Previous work has demonstrated that superimposed constructs formed a volcanic arc that likely blocked direct eastward flow from the Pacific to the Atlantic through the opening Drake Passage gateway as the active South Sandwich arc does today. The PIs propose a cruise to test, develop and refine, with further targeted mapping and dredging, their theory of CSS tectonics and the influence it had on the onset and development of the ACC. In addition they propose an installation of GPS receiver to test their paleogeographic reconstructions and determine whether South Georgia is moving as part of the South American plate. Broader impacts: A graduate student will be involved in all stages of the research. Undergraduate students will also be involved as watch-standers. A community college teacher will participate in the cruise. The PIs will have a website on which there will be images of the actual ocean floor dredging in operation. The teacher will participate with web and outreach support through PolarTREC. Results of the cruise are of broad interest to paleoceanographers, paleoclimate modelers and paleobiogeographers.", "east": -33.0, "geometry": "POINT(-38.5 -55)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Scotia Sea; PLATE BOUNDARIES; TECTONIC PROCESSES; NOT APPLICABLE; COASTAL ELEVATION; Southern Ocean; USAP-DC", "locations": "Scotia Sea; Southern Ocean", "north": -53.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Dalziel, Ian W.; Lawver, Lawrence; Krissek, Lawrence", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "MGDS", "repositories": "British Antarctic Survey; MGDS; UNAVCO", "science_programs": null, "south": -57.0, "title": "Collaborative Research: Role of the Central Scotia Sea Floor and North Scotia Ridge in the Onset and Development of the Antarctic Circumpolar Current", "uid": "p0010078", "west": -44.0}, {"awards": "1443296 Cottle, John", "bounds_geometry": "POLYGON((-180 -76.85314,-179.4383642 -76.85314,-178.8767284 -76.85314,-178.3150926 -76.85314,-177.7534568 -76.85314,-177.191821 -76.85314,-176.6301852 -76.85314,-176.0685494 -76.85314,-175.5069136 -76.85314,-174.9452778 -76.85314,-174.383642 -76.85314,-174.383642 -77.658865,-174.383642 -78.46459,-174.383642 -79.270315,-174.383642 -80.07604,-174.383642 -80.881765,-174.383642 -81.68749,-174.383642 -82.493215,-174.383642 -83.29894,-174.383642 -84.104665,-174.383642 -84.91039,-174.9452778 -84.91039,-175.5069136 -84.91039,-176.0685494 -84.91039,-176.6301852 -84.91039,-177.191821 -84.91039,-177.7534568 -84.91039,-178.3150926 -84.91039,-178.8767284 -84.91039,-179.4383642 -84.91039,180 -84.91039,177.4459565 -84.91039,174.891913 -84.91039,172.3378695 -84.91039,169.783826 -84.91039,167.2297825 -84.91039,164.675739 -84.91039,162.1216955 -84.91039,159.567652 -84.91039,157.0136085 -84.91039,154.459565 -84.91039,154.459565 -84.104665,154.459565 -83.29894,154.459565 -82.493215,154.459565 -81.68749,154.459565 -80.881765,154.459565 -80.07604,154.459565 -79.270315,154.459565 -78.46459,154.459565 -77.658865,154.459565 -76.85314,157.0136085 -76.85314,159.567652 -76.85314,162.1216955 -76.85314,164.675739 -76.85314,167.2297825 -76.85314,169.783826 -76.85314,172.3378695 -76.85314,174.891913 -76.85314,177.4459565 -76.85314,-180 -76.85314))", "dataset_titles": null, "datasets": null, "date_created": "Mon, 02 Dec 2019 00:00:00 GMT", "description": "Subduction takes place at convergent plate boundaries and involves sinking of one tectonic plate underneath another. Although this process is a key aspect of plate tectonics that shapes the planet over geologic time, and is a primary cause of earthquakes, it is not known what causes subduction to cease, and what effect it has on the deepest portions of the crust and the upper part of the mantle. By studying the age and composition of igneous rocks emplaced at the very end of the subduction cycle, this project seeks to understand what causes subduction to cease, and how this changes the composition and structure of the crust and upper mantle. Because this process occurs deep within the earth, the project will focus on rocks in the root of an ancient subduction zone, now exposed in the Transantarctic Mountains of Antarctica. In addition, Antarctica remains relatively poorly understood, and this project will contribute directly to increasing our understanding of the geologic history of this region. The project will focus on training graduate and undergraduate students - incorporating hands-on experience with an array of state-of-the-art analytical instrumentation. Students will also gain a range of more general skills including Geographic Information Systems (GIS), written and oral communication, and data management - strengths that are highly relevant to careers both in the academic and Geosciences industry. Each summer, high school students will be incorporated into aspects of the laboratory-based research through the UCSB research mentorship program. The PI and graduate students will engage the general public through a purpose-built iPhone App and multimedia website. Activities will include live phone and video conversations from the field between elementary school students and members of the team in Antarctica. The mechanisms by which the deep crustal delaminates or \"founders\" and is returned to the mantle remains a fundamental problem in earth science. Specifically, little is known about the temporal and spatial scales over which this process occurs or the mechanisms that trigger such catastrophic events. Igneous rocks highly enriched in potassium, called lamprophyres, are often emplaced during, and immediately after, termination of subduction and therefore potentially provide direct insight into foundering. These enigmatic rocks are important because they represent near-primary mantle melt compositions and therefore their age, geochemistry and petrologic evolution reveal key information on both the composition of the upper mantle and its thermal state. Of equal importance, they reveal how these key parameters vary through both space and time. By evaluating lamprophyres along a subduction zone margin it is possible to extract: 1) local-scale information, such as the timing and duration of melting and the role of igneous crystallization processes in generation of isotopic heterogeneities; 2) along-strike variations in mantle source composition, temperature, and depth of melting 3) the plate-scale forces that control foundering and termination of subduction. This project will study a suite of lamprophyres along the axis of the Transantarctic Mountains, emplaced during the latest stages of the Neoproterozoic - Ordovician Ross orogeny, Antarctica (roughly 505 to 470 million years before present). High-precision geochronology (age determinations) will be combined with geochemical measurements on the rocks and minerals to understand the mechanisms and timing of deep crustal foundering/delamination.", "east": -174.383642, "geometry": "POINT(170.0379615 -80.881765)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AGE DETERMINATIONS; ISOTOPES; PLATE TECTONICS; Antarctica; USAP-DC; NOT APPLICABLE", "locations": "Antarctica", "north": -76.85314, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cottle, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repositories": null, "science_programs": null, "south": -84.91039, "title": "Petrologic Constraints on Subduction Termination From Lamprophyres, Ross Orogen, Antarctica", "uid": "p0010071", "west": 154.459565}, {"awards": "9317588 Lawver, Lawrence", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP9507", "datasets": [{"dataset_uid": "002227", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9507"}, {"dataset_uid": "002590", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP9507", "url": "https://www.rvdata.us/search/cruise/NBP9507"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award supports a marine geophysical investigation of the Bransfield Strait and the Shackleton Fracture Zone and environs in the Scotia Sea in an effort to understand the neotectonic evolution of the region. Multibeam swath mapping and sidescan sonar mapping will be used along with multichannel seismic imaging. The main goal of this proposal is to collect multibeam and sidescan sonar data to map the structural character and tectonic fabric of the evolving plate boundary in Southwest Scotia Sea, Shackleton Fracture Zone, and Bransfield Strait. Follow up multichannel seismic surveys will be done in the Southwest Scotia Sea. The secondary goal is to use sidescan sonar reflectivity images to generate detailed structural maps of the seafloor of these regions and to integrate the new data with existing seismic reflection, Geosat gravity, Hydrosweep and Seabeam bathymetric data. Once the base maps are produced they can be used by other researchers to help interpret multichannel and single channel seismic reflection records. The neotectonic evolution of the Antarctic Peninsula and Scotia Sea is extremely complex. Understanding the recent evolution of the Drake-Scotia-Antarctic-South America plate intersections will provide important information as to how major plate boundaries reorganize after demise of a long-lived spreading center and the consequential reduction in the number of plates. The plate reorganization probably resulted in the uplift of the Shackleton Ridge which may have effected the sedimentary patterns in both the Scotia Sea and possibly the Weddell Sea. If the break of the Shackleton transform fault can be traced with multibeam and sidescan sonar as it intersects the southern end of South America then the orientation and geometry of the faults, fractures and deformation as the transform fault intersects the South American continent will help to interpret the structures in that complex region. Bransfield Strait is presently undergoing extensi on based on high heat flow, active volcanoes and inferences from seismic reflection work. Seismic refraction indicates thick crust similar to the East African Rift or passive volcanic margins of continents. In contrast, analysis of isotopes and rare earth elements of the recent volcanics shows seemingly no continental contamination. The active extension in Bransfield Strait must be related to the plate reorganization but it is unclear exactly what tectonic processes are occurring. Besides elucidating the tectonic fabric of Bransfield Strait, the multibeam and sidescan sonar survey will identify potential dredge targets and DSRV Alvin dive sites.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Klinkhammer, Gary", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Neotectonic Evolution of Antarctic Peninsula/Scotia Sea Region: Multi-Beam, Sidescan Sonar, Seismic, Magnetics and Gravity Studies", "uid": "p0000809", "west": null}, {"awards": "0126340 Cande, Steven", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0304B; Expedition data of NBP0304C; Expedition data of NBP0304D; Expedition data of NBP0403; Expedition data of NBP0406; Expedition data of NBP0501; Expedition data of NBP0501B", "datasets": [{"dataset_uid": "001609", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "001660", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0403"}, {"dataset_uid": "001690", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "001691", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "001692", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "002612", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0406", "url": "https://www.rvdata.us/search/cruise/NBP0406"}, {"dataset_uid": "002613", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0406", "url": "https://www.rvdata.us/search/cruise/NBP0406"}, {"dataset_uid": "002626", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0403", "url": "https://www.rvdata.us/search/cruise/NBP0403"}, {"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002630", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501B", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "002632", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304B", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "002634", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304C", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "002635", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304D", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a project to make use of ship-repositioning transit cruises to gather geophysical information relating to plate tectonics of the Southern Ocean and to support student training activities. Well-constrained Cenozoic plate reconstructions of the circum-Antarctic region are critical for examining a number of problems of global geophysical importance. These problems include, e.g., relating the plate kinematics to its geological consequences in various plate circuits (Pacific-North America, Australia-Pacific); a dynamical understanding of what drives plate tectonics (which requires well-constrained kinematic information in order to distinguish between different geodynamic hypotheses); and an understanding of the rheology of the plates themselves, including the amount of internal deformation they can support, and the conditions leading to the formation of new plate boundaries through breakup of existing plates. By obtaining better constraints on the motion of the Antarctica plate with respect to these other plates, and by better quantifying the internal deformation within Antarctica (between East and West Antarctica), contributions will be made to solving these other fundamental problems.\u003cbr/\u003e\u003cbr/\u003eIn this project, existing data will be analyzed to address several specific issues related to plate motions involving the Antarctic plate. First, work will be done on four-plate solutions of Australia-Pacific-West Antarctica-East Antarctica motion, in order to most tightly constrain the rotation parameters for separation between East and West Antarctica for the time period from about 45 to 28 Ma (Adare Basin spreading system). This will be done by imposing closure on the four-plate circuit and using relevant marine geophysical data from all four of the boundaries. The uncertainties in the resulting rotation parameters will be determined based on the uncertainties in the data points. These uncertainties can then be propagated in the plate circuit for use in addressing the various global geodynamic problems mentioned above. Second, rotation parameters for Pacific-West Antarctica during Tertiary time will be determined using recently acquired well-navigated Palmer transit data and any additional data that can be acquired during the course of this project. These parameters and their uncertainties will be used in assessments of plate rigidity and included in the plate circuit studies.\u003cbr/\u003e\u003cbr/\u003eIn the framework of this project, new collection of marine geophysical data will be accomplished on a very flexible schedule. This will be done by collecting underway gravity, magnetics, and swath bathymetric data on Palmer transit cruises of geological importance. This has been successfully done on eight previous Palmer cruises since 1997, the most recent four of which were funded under a collaborative OPP grant to CalTech and Scripps which is now expiring. On one of the suitable transits, a formal class in marine geophysics will be conducted that will afford an opportunity to 12 or more graduate and undergraduate students, from CalTech and Scripps as well as other institutions. In this way, educational activities will be integrated with the usual scientific data collection objectives of the research project.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven; Gordon, Arnold; Miller, Alisa", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Improved Cenozoic Plate Reconstructions of the Circum-Antarctic Region", "uid": "p0000825", "west": null}, {"awards": "9814622 Wiens, Douglas", "bounds_geometry": "POLYGON((-70.90604 -52.35474,-69.307306 -52.35474,-67.708572 -52.35474,-66.109838 -52.35474,-64.511104 -52.35474,-62.91237 -52.35474,-61.313636 -52.35474,-59.714902 -52.35474,-58.116168 -52.35474,-56.517434 -52.35474,-54.9187 -52.35474,-54.9187 -53.658393,-54.9187 -54.962046,-54.9187 -56.265699,-54.9187 -57.569352,-54.9187 -58.873005,-54.9187 -60.176658,-54.9187 -61.480311,-54.9187 -62.783964,-54.9187 -64.087617,-54.9187 -65.39127,-56.517434 -65.39127,-58.116168 -65.39127,-59.714902 -65.39127,-61.313636 -65.39127,-62.91237 -65.39127,-64.511104 -65.39127,-66.109838 -65.39127,-67.708572 -65.39127,-69.307306 -65.39127,-70.90604 -65.39127,-70.90604 -64.087617,-70.90604 -62.783964,-70.90604 -61.480311,-70.90604 -60.176658,-70.90604 -58.873005,-70.90604 -57.569352,-70.90604 -56.265699,-70.90604 -54.962046,-70.90604 -53.658393,-70.90604 -52.35474))", "dataset_titles": "Expedition Data; Expedition data of LMG0003A", "datasets": [{"dataset_uid": "002688", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0003A", "url": "https://www.rvdata.us/search/cruise/LMG0003A"}, {"dataset_uid": "002059", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9905"}, {"dataset_uid": "001854", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0106"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to transform three temporary seismometers in the Antarctic Peninsula into semi-permanent stations and to continue basic research using these data. During 1997 and 1998, a network of 11 broadband seismographs in the Antarctic Peninsula region and southernmost Chilean Patagonia were installed and maintained. Data return from this project has been excellent and interesting initial results have been produced. The continued operation of these instruments over a longer time period would be highly beneficial because the number of larger magnitude regional earthquakes is small and so a longer time is needed to acquire data. However, instruments from this project are borrowed from the IRIS-PASSCAL instrument pool and must be returned to PASSCAL in April, 1999. This award provides funds to convert three stations at permanent Chilean bases in the Antarctic to permanent stations, and to continue the seismological investigation of the region for a period of four years. As part of this project, a fourth station, in Chilean Patagonia, will continue to be operated using Washington University equipment. The funding of this project will enable continued collaboration between Washington University and the Universidad de Chile in the operation of these stations, and the data will be forwarded to the IRIS data center as well as to other international seismological collaborators. Mutual data exchanges with other national groups with Antarctic seismology research programs will provide access to broadband data from a variety of other proprietary broadband stations in the region. The data will be used to study the seismicity and upper mantle velocity structure of several complicated tectonic regions in the area, including the South Shetland subduction zone, the Bransfield backarc rift, and diffuse plate boundaries in Patagonia, Drake Passage, and along the South Scotia Ridge. In particular, the operation of these stations over a longer time period will allow a better understanding of the seismicity of the South Shetland Trench, an unusual subduction zone showing very slow subduction of young lithosphere. These seismometers will also be used to record airgun shots during a geophysical cruise in the Bransfield Strait that is being planned by the University of Texas for April, 2000. These data will provide important constraints on the crustal structure beneath the stations, and the improved structural models will enable implementation of more precise earthquake location procedures in support of a seismological understanding of the region.", "east": -54.9187, "geometry": "POINT(-62.91237 -58.873005)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V LMG; R/V NBP", "locations": null, "north": -52.35474, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wiens, Douglas; Visbeck, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.39127, "title": "Acquisition and Operation of Broadband Seismograph Equipment at Chilean Bases in the Antarctic Peninsula Region", "uid": "p0000604", "west": -70.90604}, {"awards": "0126334 Stock, Joann", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0304B; Expedition data of NBP0304C; Expedition data of NBP0304D; Expedition data of NBP0403; Expedition data of NBP0406; Expedition data of NBP0501; Expedition data of NBP0501B", "datasets": [{"dataset_uid": "002627", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002639", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0403", "url": "https://www.rvdata.us/search/cruise/NBP0403"}, {"dataset_uid": "002637", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304D", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "001609", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "001691", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "001692", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304D"}, {"dataset_uid": "001660", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0403"}, {"dataset_uid": "002631", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501B", "url": "https://www.rvdata.us/search/cruise/NBP0501B"}, {"dataset_uid": "002636", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304C", "url": "https://www.rvdata.us/search/cruise/NBP0304C"}, {"dataset_uid": "001690", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}, {"dataset_uid": "002628", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0501", "url": "https://www.rvdata.us/search/cruise/NBP0501"}, {"dataset_uid": "002612", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0406", "url": "https://www.rvdata.us/search/cruise/NBP0406"}, {"dataset_uid": "002633", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0304B", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a project to make use of ship-repositioning transit cruises to gather geophysical information relating to plate tectonics of the Southern Ocean and to support student training activities. Well-constrained Cenozoic plate reconstructions of the circum-Antarctic region are critical for examining a number of problems of global geophysical importance. These problems include, e.g., relating the plate kinematics to its geological consequences in various plate circuits (Pacific-North America, Australia-Pacific); a dynamical understanding of what drives plate tectonics (which requires well-constrained kinematic information in order to distinguish between different geodynamic hypotheses); and an understanding of the rheology of the plates themselves, including the amount of internal deformation they can support, and the conditions leading to the formation of new plate boundaries through breakup of existing plates. By obtaining better constraints on the motion of the Antarctica plate with respect to these other plates, and by better quantifying the internal deformation within Antarctica (between East and West Antarctica), contributions will be made to solving these other fundamental problems.\u003cbr/\u003e\u003cbr/\u003eIn this project, existing data will be analyzed to address several specific issues related to plate motions involving the Antarctic plate. First, work will be done on four-plate solutions of Australia-Pacific-West Antarctica-East Antarctica motion, in order to most tightly constrain the rotation parameters for separation between East and West Antarctica for the time period from about 45 to 28 Ma (Adare Basin spreading system). This will be done by imposing closure on the four-plate circuit and using relevant marine geophysical data from all four of the boundaries. The uncertainties in the resulting rotation parameters will be determined based on the uncertainties in the data points. These uncertainties can then be propagated in the plate circuit for use in addressing the various global geodynamic problems mentioned above. Second, rotation parameters for Pacific-West Antarctica during Tertiary time will be determined using recently acquired well-navigated Palmer transit data and any additional data that can be acquired during the course of this project. These parameters and their uncertainties will be used in assessments of plate rigidity and included in the plate circuit studies.\u003cbr/\u003e\u003cbr/\u003eIn the framework of this project, new collection of marine geophysical data will be accomplished on a very flexible schedule. This will be done by collecting underway gravity, magnetics, and swath bathymetric data on Palmer transit cruises of geological importance. This has been successfully done on eight previous Palmer cruises since 1997, the most recent four of which were funded under a collaborative OPP grant to CalTech and Scripps which is now expiring. On one of the suitable transits, a formal class in marine geophysics will be conducted that will afford an opportunity to 12 or more graduate and undergraduate students, from CalTech and Scripps as well as other institutions. In this way, educational activities will be integrated with the usual scientific data collection objectives of the research project.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: Improved Cenozoic Plate Reconstructions of the Circum-Antarctic Region", "uid": "p0000824", "west": null}, {"awards": "0125624 Wilson, Terry; 0126279 Lawver, Lawrence", "bounds_geometry": "POLYGON((163.69456 -75.04911,164.525266 -75.04911,165.355972 -75.04911,166.186678 -75.04911,167.017384 -75.04911,167.84809 -75.04911,168.678796 -75.04911,169.509502 -75.04911,170.340208 -75.04911,171.170914 -75.04911,172.00162 -75.04911,172.00162 -75.3293,172.00162 -75.60949,172.00162 -75.88968,172.00162 -76.16987,172.00162 -76.45006,172.00162 -76.73025,172.00162 -77.01044,172.00162 -77.29063,172.00162 -77.57082,172.00162 -77.85101,171.170914 -77.85101,170.340208 -77.85101,169.509502 -77.85101,168.678796 -77.85101,167.84809 -77.85101,167.017384 -77.85101,166.186678 -77.85101,165.355972 -77.85101,164.525266 -77.85101,163.69456 -77.85101,163.69456 -77.57082,163.69456 -77.29063,163.69456 -77.01044,163.69456 -76.73025,163.69456 -76.45006,163.69456 -76.16987,163.69456 -75.88968,163.69456 -75.60949,163.69456 -75.3293,163.69456 -75.04911))", "dataset_titles": "Expedition Data; NBP0401 data", "datasets": [{"dataset_uid": "000106", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0401 data", "url": "https://www.rvdata.us/search/cruise/NBP0401"}, {"dataset_uid": "001664", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0401"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate the tectonic development of the southwestern Ross Sea region. Displacements between East and West Antarctica have long been proposed based on global plate circuits, apparent hot spot motions, interpretations of seafloor magnetic anomalies, paleomagnetism, and on geologic grounds. Such motions require plate boundaries crossing Antarctica, yet these boundaries have never been explicitly defined. This project will attempt to delineate the late Cenozoic - active boundary between East and West Antarctica along the Terror Rift in the western Ross Sea, where young structures have been identified, continuity between active extension and intracontinental structures can be established, and where accessibility via ship will allow new key data sets to be acquired. We will use multi-source marine and airborne geophysical data to map the fault patterns and volcanic structure along the eastern margin of the Terror Rift. The orientations of volcanic fissures and seamount alignments on the seafloor will be mapped using multibeam bathymetry. The volcanic alignments will show the regional extension or shear directions across the Terror Rift and the orientations of associated crustal stresses. Swath bathymetry and single channel seismic data will be used to document neotectonic fault patterns and the eastern limit of recent faulting. Delineation of neotectonic fault patterns will demonstrate whether the eastern margin of the Terror Rift forms a continuous boundary and whether the rift itself can be linked with postulated strike-slip faults in the northwestern Ross Sea. Seafloor findings from this project will be combined with fault kinematic and stress field determinations from the surrounding volcanic islands and the Transantarctic Mountains. The integrated results will test the propositions that the eastern boundary of the Terror Rift forms the limit of the major, late Cenozoic -active structures through the Ross Sea and that Terror Rift kinematics involve dextral transtension linked to the right-lateral strike-slip faulting to the north. These results will help constrain the kinematic and dynamic links between the West Antarctic rift system and Southern Ocean structures and any related motions between East and West Antarctica. In the first year, a collaborative structural analysis of existing multichannel and single channel seismic profiles and aeromagnetic data over the Terror Rift will be conducted. The location of volcanic vents or fissures and any fault scarps on the sea floor will be identified and a preliminary interpretation of the age and kinematics of deformation in the Terror Rift will be produced. Late in the second year, a one-month cruise on RVIB N.B. Palmer will carry out multibeam bathymetric and sidescan sonar mapping of selected portions of the seafloor of Terror Rift. Gravity, magnetics, seismic reflection and Bathy2000 3.5 kHz sub-bottom profile data will also be collected across the rift. In the third year, we will use these multisource data to map the orientations and forms of volcanic bodies and the extent and geometry of neotectonic faulting associated with the Terror Rift. The project will: 1) complete a map of neotectonic faults and volcanic structures in the Terror Rift; 2) interpret the structural pattern to derive the motions and stresses associated with development of the rift; 3) compare Terror Rift structures with faults and lineaments mapped in the Transantarctic Mountains to improve age constraints on the structures; and 4) integrate the late Cenozoic structural interpretations from the western Ross Sea with Southern Ocean plate boundary kinematics.", "east": 172.00162, "geometry": "POINT(167.84809 -76.45006)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP", "locations": null, "north": -75.04911, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.85101, "title": "Collaborative Research: Neotectonic Structure of Terror Rift, Western Ross Sea", "uid": "p0000111", "west": 163.69456}, {"awards": "9416989 Cande, Steven", "bounds_geometry": "POLYGON((-179.9998 -46.00095,-143.99984 -46.00095,-107.99988 -46.00095,-71.99992 -46.00095,-35.99996 -46.00095,0 -46.00095,35.99996 -46.00095,71.99992 -46.00095,107.99988 -46.00095,143.99984 -46.00095,179.9998 -46.00095,179.9998 -49.185793,179.9998 -52.370636,179.9998 -55.555479,179.9998 -58.740322,179.9998 -61.925165,179.9998 -65.110008,179.9998 -68.294851,179.9998 -71.479694,179.9998 -74.664537,179.9998 -77.84938,143.99984 -77.84938,107.99988 -77.84938,71.99992 -77.84938,35.99996 -77.84938,0 -77.84938,-35.99996 -77.84938,-71.99992 -77.84938,-107.99988 -77.84938,-143.99984 -77.84938,-179.9998 -77.84938,-179.9998 -74.664537,-179.9998 -71.479694,-179.9998 -68.294851,-179.9998 -65.110008,-179.9998 -61.925165,-179.9998 -58.740322,-179.9998 -55.555479,-179.9998 -52.370636,-179.9998 -49.185793,-179.9998 -46.00095))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002148", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9702"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9416989 Cande There is a significant misfit, ranging from 50 to 250 kms, of magnetic anomalies 13, 18, and 20 along the section of the Southeast Indian Ridge east of the Balleny fracture zone. This project will survey the critical plate boundaries and relevant magnetic anomalies in the South Tasman Sea, Emerald Basin and north of the Ross Sea embayment that will better constrain the history of the this plate motion. Data collected will be used to test the hypothesis that the Antarctic side of the ridge acted as a separate plate, attached to Marie Byrd Land, and that these anomalies indirectly indicate motion between East and West Antarctica between anomalies 24 and 13 time. Surveys will be conducted on the R/V W M Ewing in the Tasman Sea, and on the R/V N B Palmer north of the Ross Sea embayment. ***", "east": 179.9998, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -46.00095, "nsf_funding_programs": null, "paleo_time": null, "persons": "Cande, Steven", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.84938, "title": "Collaborative Research: Early Tertiary Tectonic Evolution of the Pacific-Australia-Antarctic Plate Circuit", "uid": "p0000632", "west": -179.9998}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Thermal and Compositional Structure of Antarctica from Probabilistic Joint Inversion of Seismic, Gravity, and Topography Data and Petrological Modelling
|
2203487 |
2022-06-06 | Ben-Mansour, Walid; Wiens, Douglas | No dataset link provided | Non-Technical abstract The physical state of the mantle beneath the Antarctic Ice Sheet plays a key role in the interaction between the Antarctic ice cover and the solid earth, strongly influencing the glacial system's evolution. Generally, mantle temperature profiles are determined by analyzing rock samples from the mantle to determine pressure-temperature conditions, and/or by conversion of seismic velocity anomalies to temperature anomalies. However, mantle rocks have been found only in a very few places in Antarctica, and seismic anomalies reflect not only thermal anomalies but also compositional variations. In this project, the investigators will (1) use the most recent geophysical datasets sensitive to temperature and composition (high-resolution seismic velocity model, topography, satellite gravity), (2) Combine the sensitivity of these datasets in a to retrieve the most reliable model of thermal and compositional structure, (3) translate the results into 2-dimensional maps of temperature slices and the composition of iron in the mantle,(4) compare the results with results from other continents to better understand Antarctic geological history, and (5) use the new thermal model along with established rock relationships to estimate mantle viscosity. Technical abstract The thermochemical structure of the lithosphere beneath Antarctica is fundamental for understanding the geological evolution of the continent and its relationship to surrounding Gondwana continents. In addition, the thermal structure controls the solid earth response to glacial unloading, with important implications for ice sheet models and the future of the West Antarctic Ice Sheet. However, it is challenging to get an accurate picture of temperature and composition from only sparse petrological/geochemical analysis, and most previous attempts to solve this problem geophysically have relied on seismic or gravity data alone. Here, we propose to use a probabilistic joint inversion (high resolution regional seismic data, satellite gravity data, topography) and petrological modelling approach to determine the 3D thermochemical structure of the mantle. The inversion will be carried out using a Markov-chain Bayesian Monte Carlo methodology, providing quantitative estimates of uncertainties. Mapping the 3-dimensional thermochemical structure (thermal and composition) will provide a comprehensive view of the horizontal (50-100 km resolution) and vertical (from the surface down to 380 km) variations. This new model will give us the temperature variation from the surface down to 380 km and the degree of depletion of the lithospheric mantle and the sub-lithospheric mantle. This new model will also be compared to recent models of Gondwana terranes 200 Myrs to build a new model of the thermochemical evolution of the cratonic mantle. The new thermal and chemical structures can be used to better understand the geothermal heat flux beneath the ice sheet as well as improve glacial isostatic adjustment and ice sheet models. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Collaborative Research: Role of the Central Scotia Sea Floor and North Scotia Ridge in the Onset and Development of the Antarctic Circumpolar Current
|
1246111 |
2020-01-28 | Dalziel, Ian W.; Lawver, Lawrence; Krissek, Lawrence |
|
Intellectual Merit: Opening of Drake Passage and the West Scotia Sea south of Tierra del Fuego broke the final continental barrier to onset of a complete Antarctic Circumpolar Current (ACC). Initiation of the ACC has been associated in time with a major, abrupt, drop in global temperatures and the rapid expansion of the Antarctic ice sheets at 33-34 Ma. Events leading to the formation of the Drake Passage gateway are poorly known. Understanding the tectonic evolution of the floor of the Central Scotia Sea (CSS) and the North Scotia Ridge is a key to this understanding. Previous work has demonstrated that superimposed constructs formed a volcanic arc that likely blocked direct eastward flow from the Pacific to the Atlantic through the opening Drake Passage gateway as the active South Sandwich arc does today. The PIs propose a cruise to test, develop and refine, with further targeted mapping and dredging, their theory of CSS tectonics and the influence it had on the onset and development of the ACC. In addition they propose an installation of GPS receiver to test their paleogeographic reconstructions and determine whether South Georgia is moving as part of the South American plate. Broader impacts: A graduate student will be involved in all stages of the research. Undergraduate students will also be involved as watch-standers. A community college teacher will participate in the cruise. The PIs will have a website on which there will be images of the actual ocean floor dredging in operation. The teacher will participate with web and outreach support through PolarTREC. Results of the cruise are of broad interest to paleoceanographers, paleoclimate modelers and paleobiogeographers. | POLYGON((-44 -53,-42.9 -53,-41.8 -53,-40.7 -53,-39.6 -53,-38.5 -53,-37.4 -53,-36.3 -53,-35.2 -53,-34.1 -53,-33 -53,-33 -53.4,-33 -53.8,-33 -54.2,-33 -54.6,-33 -55,-33 -55.4,-33 -55.8,-33 -56.2,-33 -56.6,-33 -57,-34.1 -57,-35.2 -57,-36.3 -57,-37.4 -57,-38.5 -57,-39.6 -57,-40.7 -57,-41.8 -57,-42.9 -57,-44 -57,-44 -56.6,-44 -56.2,-44 -55.8,-44 -55.4,-44 -55,-44 -54.6,-44 -54.2,-44 -53.8,-44 -53.4,-44 -53)) | POINT(-38.5 -55) | false | false | |||||||
Petrologic Constraints on Subduction Termination From Lamprophyres, Ross Orogen, Antarctica
|
1443296 |
2019-12-02 | Cottle, John | No dataset link provided | Subduction takes place at convergent plate boundaries and involves sinking of one tectonic plate underneath another. Although this process is a key aspect of plate tectonics that shapes the planet over geologic time, and is a primary cause of earthquakes, it is not known what causes subduction to cease, and what effect it has on the deepest portions of the crust and the upper part of the mantle. By studying the age and composition of igneous rocks emplaced at the very end of the subduction cycle, this project seeks to understand what causes subduction to cease, and how this changes the composition and structure of the crust and upper mantle. Because this process occurs deep within the earth, the project will focus on rocks in the root of an ancient subduction zone, now exposed in the Transantarctic Mountains of Antarctica. In addition, Antarctica remains relatively poorly understood, and this project will contribute directly to increasing our understanding of the geologic history of this region. The project will focus on training graduate and undergraduate students - incorporating hands-on experience with an array of state-of-the-art analytical instrumentation. Students will also gain a range of more general skills including Geographic Information Systems (GIS), written and oral communication, and data management - strengths that are highly relevant to careers both in the academic and Geosciences industry. Each summer, high school students will be incorporated into aspects of the laboratory-based research through the UCSB research mentorship program. The PI and graduate students will engage the general public through a purpose-built iPhone App and multimedia website. Activities will include live phone and video conversations from the field between elementary school students and members of the team in Antarctica. The mechanisms by which the deep crustal delaminates or "founders" and is returned to the mantle remains a fundamental problem in earth science. Specifically, little is known about the temporal and spatial scales over which this process occurs or the mechanisms that trigger such catastrophic events. Igneous rocks highly enriched in potassium, called lamprophyres, are often emplaced during, and immediately after, termination of subduction and therefore potentially provide direct insight into foundering. These enigmatic rocks are important because they represent near-primary mantle melt compositions and therefore their age, geochemistry and petrologic evolution reveal key information on both the composition of the upper mantle and its thermal state. Of equal importance, they reveal how these key parameters vary through both space and time. By evaluating lamprophyres along a subduction zone margin it is possible to extract: 1) local-scale information, such as the timing and duration of melting and the role of igneous crystallization processes in generation of isotopic heterogeneities; 2) along-strike variations in mantle source composition, temperature, and depth of melting 3) the plate-scale forces that control foundering and termination of subduction. This project will study a suite of lamprophyres along the axis of the Transantarctic Mountains, emplaced during the latest stages of the Neoproterozoic - Ordovician Ross orogeny, Antarctica (roughly 505 to 470 million years before present). High-precision geochronology (age determinations) will be combined with geochemical measurements on the rocks and minerals to understand the mechanisms and timing of deep crustal foundering/delamination. | POLYGON((-180 -76.85314,-179.4383642 -76.85314,-178.8767284 -76.85314,-178.3150926 -76.85314,-177.7534568 -76.85314,-177.191821 -76.85314,-176.6301852 -76.85314,-176.0685494 -76.85314,-175.5069136 -76.85314,-174.9452778 -76.85314,-174.383642 -76.85314,-174.383642 -77.658865,-174.383642 -78.46459,-174.383642 -79.270315,-174.383642 -80.07604,-174.383642 -80.881765,-174.383642 -81.68749,-174.383642 -82.493215,-174.383642 -83.29894,-174.383642 -84.104665,-174.383642 -84.91039,-174.9452778 -84.91039,-175.5069136 -84.91039,-176.0685494 -84.91039,-176.6301852 -84.91039,-177.191821 -84.91039,-177.7534568 -84.91039,-178.3150926 -84.91039,-178.8767284 -84.91039,-179.4383642 -84.91039,180 -84.91039,177.4459565 -84.91039,174.891913 -84.91039,172.3378695 -84.91039,169.783826 -84.91039,167.2297825 -84.91039,164.675739 -84.91039,162.1216955 -84.91039,159.567652 -84.91039,157.0136085 -84.91039,154.459565 -84.91039,154.459565 -84.104665,154.459565 -83.29894,154.459565 -82.493215,154.459565 -81.68749,154.459565 -80.881765,154.459565 -80.07604,154.459565 -79.270315,154.459565 -78.46459,154.459565 -77.658865,154.459565 -76.85314,157.0136085 -76.85314,159.567652 -76.85314,162.1216955 -76.85314,164.675739 -76.85314,167.2297825 -76.85314,169.783826 -76.85314,172.3378695 -76.85314,174.891913 -76.85314,177.4459565 -76.85314,-180 -76.85314)) | POINT(170.0379615 -80.881765) | false | false | |||||||
Neotectonic Evolution of Antarctic Peninsula/Scotia Sea Region: Multi-Beam, Sidescan Sonar, Seismic, Magnetics and Gravity Studies
|
9317588 |
2010-05-04 | Klinkhammer, Gary |
|
This award supports a marine geophysical investigation of the Bransfield Strait and the Shackleton Fracture Zone and environs in the Scotia Sea in an effort to understand the neotectonic evolution of the region. Multibeam swath mapping and sidescan sonar mapping will be used along with multichannel seismic imaging. The main goal of this proposal is to collect multibeam and sidescan sonar data to map the structural character and tectonic fabric of the evolving plate boundary in Southwest Scotia Sea, Shackleton Fracture Zone, and Bransfield Strait. Follow up multichannel seismic surveys will be done in the Southwest Scotia Sea. The secondary goal is to use sidescan sonar reflectivity images to generate detailed structural maps of the seafloor of these regions and to integrate the new data with existing seismic reflection, Geosat gravity, Hydrosweep and Seabeam bathymetric data. Once the base maps are produced they can be used by other researchers to help interpret multichannel and single channel seismic reflection records. The neotectonic evolution of the Antarctic Peninsula and Scotia Sea is extremely complex. Understanding the recent evolution of the Drake-Scotia-Antarctic-South America plate intersections will provide important information as to how major plate boundaries reorganize after demise of a long-lived spreading center and the consequential reduction in the number of plates. The plate reorganization probably resulted in the uplift of the Shackleton Ridge which may have effected the sedimentary patterns in both the Scotia Sea and possibly the Weddell Sea. If the break of the Shackleton transform fault can be traced with multibeam and sidescan sonar as it intersects the southern end of South America then the orientation and geometry of the faults, fractures and deformation as the transform fault intersects the South American continent will help to interpret the structures in that complex region. Bransfield Strait is presently undergoing extensi on based on high heat flow, active volcanoes and inferences from seismic reflection work. Seismic refraction indicates thick crust similar to the East African Rift or passive volcanic margins of continents. In contrast, analysis of isotopes and rare earth elements of the recent volcanics shows seemingly no continental contamination. The active extension in Bransfield Strait must be related to the plate reorganization but it is unclear exactly what tectonic processes are occurring. Besides elucidating the tectonic fabric of Bransfield Strait, the multibeam and sidescan sonar survey will identify potential dredge targets and DSRV Alvin dive sites. | None | None | false | false | |||||||
Collaborative Research: Improved Cenozoic Plate Reconstructions of the Circum-Antarctic Region
|
0126340 |
2010-05-04 | Cande, Steven; Gordon, Arnold; Miller, Alisa | This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a project to make use of ship-repositioning transit cruises to gather geophysical information relating to plate tectonics of the Southern Ocean and to support student training activities. Well-constrained Cenozoic plate reconstructions of the circum-Antarctic region are critical for examining a number of problems of global geophysical importance. These problems include, e.g., relating the plate kinematics to its geological consequences in various plate circuits (Pacific-North America, Australia-Pacific); a dynamical understanding of what drives plate tectonics (which requires well-constrained kinematic information in order to distinguish between different geodynamic hypotheses); and an understanding of the rheology of the plates themselves, including the amount of internal deformation they can support, and the conditions leading to the formation of new plate boundaries through breakup of existing plates. By obtaining better constraints on the motion of the Antarctica plate with respect to these other plates, and by better quantifying the internal deformation within Antarctica (between East and West Antarctica), contributions will be made to solving these other fundamental problems.<br/><br/>In this project, existing data will be analyzed to address several specific issues related to plate motions involving the Antarctic plate. First, work will be done on four-plate solutions of Australia-Pacific-West Antarctica-East Antarctica motion, in order to most tightly constrain the rotation parameters for separation between East and West Antarctica for the time period from about 45 to 28 Ma (Adare Basin spreading system). This will be done by imposing closure on the four-plate circuit and using relevant marine geophysical data from all four of the boundaries. The uncertainties in the resulting rotation parameters will be determined based on the uncertainties in the data points. These uncertainties can then be propagated in the plate circuit for use in addressing the various global geodynamic problems mentioned above. Second, rotation parameters for Pacific-West Antarctica during Tertiary time will be determined using recently acquired well-navigated Palmer transit data and any additional data that can be acquired during the course of this project. These parameters and their uncertainties will be used in assessments of plate rigidity and included in the plate circuit studies.<br/><br/>In the framework of this project, new collection of marine geophysical data will be accomplished on a very flexible schedule. This will be done by collecting underway gravity, magnetics, and swath bathymetric data on Palmer transit cruises of geological importance. This has been successfully done on eight previous Palmer cruises since 1997, the most recent four of which were funded under a collaborative OPP grant to CalTech and Scripps which is now expiring. On one of the suitable transits, a formal class in marine geophysics will be conducted that will afford an opportunity to 12 or more graduate and undergraduate students, from CalTech and Scripps as well as other institutions. In this way, educational activities will be integrated with the usual scientific data collection objectives of the research project. | None | None | false | false | ||||||||
Acquisition and Operation of Broadband Seismograph Equipment at Chilean Bases in the Antarctic Peninsula Region
|
9814622 |
2010-05-04 | Wiens, Douglas; Visbeck, Martin |
|
This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research to transform three temporary seismometers in the Antarctic Peninsula into semi-permanent stations and to continue basic research using these data. During 1997 and 1998, a network of 11 broadband seismographs in the Antarctic Peninsula region and southernmost Chilean Patagonia were installed and maintained. Data return from this project has been excellent and interesting initial results have been produced. The continued operation of these instruments over a longer time period would be highly beneficial because the number of larger magnitude regional earthquakes is small and so a longer time is needed to acquire data. However, instruments from this project are borrowed from the IRIS-PASSCAL instrument pool and must be returned to PASSCAL in April, 1999. This award provides funds to convert three stations at permanent Chilean bases in the Antarctic to permanent stations, and to continue the seismological investigation of the region for a period of four years. As part of this project, a fourth station, in Chilean Patagonia, will continue to be operated using Washington University equipment. The funding of this project will enable continued collaboration between Washington University and the Universidad de Chile in the operation of these stations, and the data will be forwarded to the IRIS data center as well as to other international seismological collaborators. Mutual data exchanges with other national groups with Antarctic seismology research programs will provide access to broadband data from a variety of other proprietary broadband stations in the region. The data will be used to study the seismicity and upper mantle velocity structure of several complicated tectonic regions in the area, including the South Shetland subduction zone, the Bransfield backarc rift, and diffuse plate boundaries in Patagonia, Drake Passage, and along the South Scotia Ridge. In particular, the operation of these stations over a longer time period will allow a better understanding of the seismicity of the South Shetland Trench, an unusual subduction zone showing very slow subduction of young lithosphere. These seismometers will also be used to record airgun shots during a geophysical cruise in the Bransfield Strait that is being planned by the University of Texas for April, 2000. These data will provide important constraints on the crustal structure beneath the stations, and the improved structural models will enable implementation of more precise earthquake location procedures in support of a seismological understanding of the region. | POLYGON((-70.90604 -52.35474,-69.307306 -52.35474,-67.708572 -52.35474,-66.109838 -52.35474,-64.511104 -52.35474,-62.91237 -52.35474,-61.313636 -52.35474,-59.714902 -52.35474,-58.116168 -52.35474,-56.517434 -52.35474,-54.9187 -52.35474,-54.9187 -53.658393,-54.9187 -54.962046,-54.9187 -56.265699,-54.9187 -57.569352,-54.9187 -58.873005,-54.9187 -60.176658,-54.9187 -61.480311,-54.9187 -62.783964,-54.9187 -64.087617,-54.9187 -65.39127,-56.517434 -65.39127,-58.116168 -65.39127,-59.714902 -65.39127,-61.313636 -65.39127,-62.91237 -65.39127,-64.511104 -65.39127,-66.109838 -65.39127,-67.708572 -65.39127,-69.307306 -65.39127,-70.90604 -65.39127,-70.90604 -64.087617,-70.90604 -62.783964,-70.90604 -61.480311,-70.90604 -60.176658,-70.90604 -58.873005,-70.90604 -57.569352,-70.90604 -56.265699,-70.90604 -54.962046,-70.90604 -53.658393,-70.90604 -52.35474)) | POINT(-62.91237 -58.873005) | false | false | |||||||
Collaborative Research: Improved Cenozoic Plate Reconstructions of the Circum-Antarctic Region
|
0126334 |
2010-05-04 | Cande, Steven | This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a project to make use of ship-repositioning transit cruises to gather geophysical information relating to plate tectonics of the Southern Ocean and to support student training activities. Well-constrained Cenozoic plate reconstructions of the circum-Antarctic region are critical for examining a number of problems of global geophysical importance. These problems include, e.g., relating the plate kinematics to its geological consequences in various plate circuits (Pacific-North America, Australia-Pacific); a dynamical understanding of what drives plate tectonics (which requires well-constrained kinematic information in order to distinguish between different geodynamic hypotheses); and an understanding of the rheology of the plates themselves, including the amount of internal deformation they can support, and the conditions leading to the formation of new plate boundaries through breakup of existing plates. By obtaining better constraints on the motion of the Antarctica plate with respect to these other plates, and by better quantifying the internal deformation within Antarctica (between East and West Antarctica), contributions will be made to solving these other fundamental problems.<br/><br/>In this project, existing data will be analyzed to address several specific issues related to plate motions involving the Antarctic plate. First, work will be done on four-plate solutions of Australia-Pacific-West Antarctica-East Antarctica motion, in order to most tightly constrain the rotation parameters for separation between East and West Antarctica for the time period from about 45 to 28 Ma (Adare Basin spreading system). This will be done by imposing closure on the four-plate circuit and using relevant marine geophysical data from all four of the boundaries. The uncertainties in the resulting rotation parameters will be determined based on the uncertainties in the data points. These uncertainties can then be propagated in the plate circuit for use in addressing the various global geodynamic problems mentioned above. Second, rotation parameters for Pacific-West Antarctica during Tertiary time will be determined using recently acquired well-navigated Palmer transit data and any additional data that can be acquired during the course of this project. These parameters and their uncertainties will be used in assessments of plate rigidity and included in the plate circuit studies.<br/><br/>In the framework of this project, new collection of marine geophysical data will be accomplished on a very flexible schedule. This will be done by collecting underway gravity, magnetics, and swath bathymetric data on Palmer transit cruises of geological importance. This has been successfully done on eight previous Palmer cruises since 1997, the most recent four of which were funded under a collaborative OPP grant to CalTech and Scripps which is now expiring. On one of the suitable transits, a formal class in marine geophysics will be conducted that will afford an opportunity to 12 or more graduate and undergraduate students, from CalTech and Scripps as well as other institutions. In this way, educational activities will be integrated with the usual scientific data collection objectives of the research project. | None | None | false | false | ||||||||
Collaborative Research: Neotectonic Structure of Terror Rift, Western Ross Sea
|
0125624 0126279 |
2010-05-04 | Wilson, Terry |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate the tectonic development of the southwestern Ross Sea region. Displacements between East and West Antarctica have long been proposed based on global plate circuits, apparent hot spot motions, interpretations of seafloor magnetic anomalies, paleomagnetism, and on geologic grounds. Such motions require plate boundaries crossing Antarctica, yet these boundaries have never been explicitly defined. This project will attempt to delineate the late Cenozoic - active boundary between East and West Antarctica along the Terror Rift in the western Ross Sea, where young structures have been identified, continuity between active extension and intracontinental structures can be established, and where accessibility via ship will allow new key data sets to be acquired. We will use multi-source marine and airborne geophysical data to map the fault patterns and volcanic structure along the eastern margin of the Terror Rift. The orientations of volcanic fissures and seamount alignments on the seafloor will be mapped using multibeam bathymetry. The volcanic alignments will show the regional extension or shear directions across the Terror Rift and the orientations of associated crustal stresses. Swath bathymetry and single channel seismic data will be used to document neotectonic fault patterns and the eastern limit of recent faulting. Delineation of neotectonic fault patterns will demonstrate whether the eastern margin of the Terror Rift forms a continuous boundary and whether the rift itself can be linked with postulated strike-slip faults in the northwestern Ross Sea. Seafloor findings from this project will be combined with fault kinematic and stress field determinations from the surrounding volcanic islands and the Transantarctic Mountains. The integrated results will test the propositions that the eastern boundary of the Terror Rift forms the limit of the major, late Cenozoic -active structures through the Ross Sea and that Terror Rift kinematics involve dextral transtension linked to the right-lateral strike-slip faulting to the north. These results will help constrain the kinematic and dynamic links between the West Antarctic rift system and Southern Ocean structures and any related motions between East and West Antarctica. In the first year, a collaborative structural analysis of existing multichannel and single channel seismic profiles and aeromagnetic data over the Terror Rift will be conducted. The location of volcanic vents or fissures and any fault scarps on the sea floor will be identified and a preliminary interpretation of the age and kinematics of deformation in the Terror Rift will be produced. Late in the second year, a one-month cruise on RVIB N.B. Palmer will carry out multibeam bathymetric and sidescan sonar mapping of selected portions of the seafloor of Terror Rift. Gravity, magnetics, seismic reflection and Bathy2000 3.5 kHz sub-bottom profile data will also be collected across the rift. In the third year, we will use these multisource data to map the orientations and forms of volcanic bodies and the extent and geometry of neotectonic faulting associated with the Terror Rift. The project will: 1) complete a map of neotectonic faults and volcanic structures in the Terror Rift; 2) interpret the structural pattern to derive the motions and stresses associated with development of the rift; 3) compare Terror Rift structures with faults and lineaments mapped in the Transantarctic Mountains to improve age constraints on the structures; and 4) integrate the late Cenozoic structural interpretations from the western Ross Sea with Southern Ocean plate boundary kinematics. | POLYGON((163.69456 -75.04911,164.525266 -75.04911,165.355972 -75.04911,166.186678 -75.04911,167.017384 -75.04911,167.84809 -75.04911,168.678796 -75.04911,169.509502 -75.04911,170.340208 -75.04911,171.170914 -75.04911,172.00162 -75.04911,172.00162 -75.3293,172.00162 -75.60949,172.00162 -75.88968,172.00162 -76.16987,172.00162 -76.45006,172.00162 -76.73025,172.00162 -77.01044,172.00162 -77.29063,172.00162 -77.57082,172.00162 -77.85101,171.170914 -77.85101,170.340208 -77.85101,169.509502 -77.85101,168.678796 -77.85101,167.84809 -77.85101,167.017384 -77.85101,166.186678 -77.85101,165.355972 -77.85101,164.525266 -77.85101,163.69456 -77.85101,163.69456 -77.57082,163.69456 -77.29063,163.69456 -77.01044,163.69456 -76.73025,163.69456 -76.45006,163.69456 -76.16987,163.69456 -75.88968,163.69456 -75.60949,163.69456 -75.3293,163.69456 -75.04911)) | POINT(167.84809 -76.45006) | false | false | |||||||
Collaborative Research: Early Tertiary Tectonic Evolution of the Pacific-Australia-Antarctic Plate Circuit
|
9416989 |
2010-05-04 | Cande, Steven |
|
9416989 Cande There is a significant misfit, ranging from 50 to 250 kms, of magnetic anomalies 13, 18, and 20 along the section of the Southeast Indian Ridge east of the Balleny fracture zone. This project will survey the critical plate boundaries and relevant magnetic anomalies in the South Tasman Sea, Emerald Basin and north of the Ross Sea embayment that will better constrain the history of the this plate motion. Data collected will be used to test the hypothesis that the Antarctic side of the ridge acted as a separate plate, attached to Marie Byrd Land, and that these anomalies indirectly indicate motion between East and West Antarctica between anomalies 24 and 13 time. Surveys will be conducted on the R/V W M Ewing in the Tasman Sea, and on the R/V N B Palmer north of the Ross Sea embayment. *** | POLYGON((-179.9998 -46.00095,-143.99984 -46.00095,-107.99988 -46.00095,-71.99992 -46.00095,-35.99996 -46.00095,0 -46.00095,35.99996 -46.00095,71.99992 -46.00095,107.99988 -46.00095,143.99984 -46.00095,179.9998 -46.00095,179.9998 -49.185793,179.9998 -52.370636,179.9998 -55.555479,179.9998 -58.740322,179.9998 -61.925165,179.9998 -65.110008,179.9998 -68.294851,179.9998 -71.479694,179.9998 -74.664537,179.9998 -77.84938,143.99984 -77.84938,107.99988 -77.84938,71.99992 -77.84938,35.99996 -77.84938,0 -77.84938,-35.99996 -77.84938,-71.99992 -77.84938,-107.99988 -77.84938,-143.99984 -77.84938,-179.9998 -77.84938,-179.9998 -74.664537,-179.9998 -71.479694,-179.9998 -68.294851,-179.9998 -65.110008,-179.9998 -61.925165,-179.9998 -58.740322,-179.9998 -55.555479,-179.9998 -52.370636,-179.9998 -49.185793,-179.9998 -46.00095)) | POINT(0 -89.999) | false | false |