{"dp_type": "Project", "free_text": "PALEOMAGNETISM"}
[{"awards": "2302832 Reilly, Brendan", "bounds_geometry": "POLYGON((-70 -55,-67 -55,-64 -55,-61 -55,-58 -55,-55 -55,-52 -55,-49 -55,-46 -55,-43 -55,-40 -55,-40 -56.1,-40 -57.2,-40 -58.3,-40 -59.4,-40 -60.5,-40 -61.6,-40 -62.7,-40 -63.8,-40 -64.9,-40 -66,-43 -66,-46 -66,-49 -66,-52 -66,-55 -66,-58 -66,-61 -66,-64 -66,-67 -66,-70 -66,-70 -64.9,-70 -63.8,-70 -62.7,-70 -61.6,-70 -60.5,-70 -59.4,-70 -58.3,-70 -57.2,-70 -56.1,-70 -55))", "dataset_titles": "NRM, ARM, IRM, and magnetic susceptibility investigations on U1537 and U1538 cube samples; Rock magnetic data from IODP Exp. 382 Sites U1537 and U1538 to support Reilly et al. \"A geochemical mechanism for \u003e10 m offsets of magnetic reversals inferred from the comparison of two Scotia Sea drill sites\"", "datasets": [{"dataset_uid": "200411", "doi": "10.5281/zenodo.10035106", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Rock magnetic data from IODP Exp. 382 Sites U1537 and U1538 to support Reilly et al. \"A geochemical mechanism for \u003e10 m offsets of magnetic reversals inferred from the comparison of two Scotia Sea drill sites\"", "url": "https://zenodo.org/records/10035107"}, {"dataset_uid": "200412", "doi": "10.7288/V4/MAGIC/19778", "keywords": null, "people": null, "repository": "MagIC (EarthRef)", "science_program": null, "title": "NRM, ARM, IRM, and magnetic susceptibility investigations on U1537 and U1538 cube samples", "url": "http://dx.doi.org/10.7288/V4/MAGIC/19778"}], "date_created": "Wed, 12 Jul 2023 00:00:00 GMT", "description": "The potential for future sea level rise from melting and collapse of Antarctic ice sheets and glaciers is concerning. We can improve our understanding of how water is exchanged between Antarctic ice sheets and the ocean by studying how ice sheets behaved in past climates, especially conditions that were similar to or warmer than those at present. For this project, the research team will document Antarctica\u0027s response across an interval when Earth transitioned from the warm Pliocene into the Pleistocene ice ages by combining marine and land evidence for glacier variations from sites near the Antarctic Peninsula, complimented by detailed work on timescales and fossil evidence for environmental change. An important goal is to test whether Antarctica\u0027s glaciers changed at the same time as glaciers in the Northern Hemisphere as Earth\u0027s most recent Ice Age intensified, or alternatively responded to regional climate forcing in the Southern Hemisphere. Eleven investigators from seven US institutions, as well as Argentine collaborators, will study new sediment cores from the International Ocean Discovery Program, as well as legacy cores from that program and on-land outcrops on James Ross Island. The group embraces a vertically integrated research program that allows high school, undergraduate, graduate, post-docs and faculty to work together on the same projects. This structure leverages the benefits of near-peer mentoring and the development of a robust collaborative research network while allowing all participants to take ownership of different parts of the project. All members of the team are firmly committed to attracting researchers from under-represented groups and will do this through existing channels as well as via co-creating programming that centers the perspectives of diverse students in conversations about sea-level rise and climate change.\r\n\r\nThe proposed research seeks to understand phasing between Northern and Southern Hemisphere glacier and climate changes, as a means to understand drivers and teleconnections. The dynamics of past Antarctic glaciation can be studied using the unique isotope geochemical and mineralogic fingerprints from glacial sectors tied to a well-constrained time model for the stratigraphic successions. The proposed work would further refine the stratigraphic context through coupled biostratigraphic and magnetostratigraphic work. The magnitude of iceberg calving and paths of icebergs will be revealed using the flux, geochemical and mineralogic signatures, and 40Ar/39Ar and U-Pb geochronology of ice-rafted detritus. These provenance tracers will establish which sectors of Antarctica\u0027s ice sheets are more vulnerable to collapse, and the timing and pacing of these events will be revealed by their stratigraphic context. Additionally, the team will work with Argentine collaborators to connect the marine and terrestrial records by studying glacier records intercalated with volcanic flows on James Ross Island. These new constraints will be integrated with a state of the art ice-sheet model to link changes in ice dynamics with their underlying causes. Together, these tight stratigraphic constraints, geochemical signatures, and ice-sheet model simulations will provide a means to compare to the global records of climate change, understand their primary drivers, and elucidate the role of the Antarctic ice sheet in a major, global climatic shift from the Pliocene into the Pleistocene.", "east": -40.0, "geometry": "POINT(-55 -60.5)", "instruments": null, "is_usap_dc": true, "keywords": "PALEOMAGNETISM; SEDIMENTS; Scotia Sea", "locations": "Scotia Sea", "north": -55.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e NEOGENE \u003e PLIOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e NEOGENE; PHANEROZOIC \u003e CENOZOIC", "persons": "Reilly, Brendan", "platforms": null, "repo": "Zenodo", "repositories": "MagIC (EarthRef); Zenodo", "science_programs": null, "south": -66.0, "title": "Collaborative Research: Linking Marine and Terrestrial Sedimentary Evidence for Plio-pleistocene Variability of Weddell Embayment and Antarctic Peninsula Glaciation", "uid": "p0010424", "west": -70.0}, {"awards": "1541285 Tauxe, Lisa", "bounds_geometry": "POLYGON((162.144 -77.2233,162.8676 -77.2233,163.5912 -77.2233,164.3148 -77.2233,165.0384 -77.2233,165.762 -77.2233,166.4856 -77.2233,167.2092 -77.2233,167.9328 -77.2233,168.6564 -77.2233,169.38 -77.2233,169.38 -77.34097,169.38 -77.45864,169.38 -77.57631,169.38 -77.69398,169.38 -77.81165,169.38 -77.92932,169.38 -78.04699,169.38 -78.16466,169.38 -78.28233,169.38 -78.4,168.6564 -78.4,167.9328 -78.4,167.2092 -78.4,166.4856 -78.4,165.762 -78.4,165.0384 -78.4,164.3148 -78.4,163.5912 -78.4,162.8676 -78.4,162.144 -78.4,162.144 -78.28233,162.144 -78.16466,162.144 -78.04699,162.144 -77.92932,162.144 -77.81165,162.144 -77.69398,162.144 -77.57631,162.144 -77.45864,162.144 -77.34097,162.144 -77.2233))", "dataset_titles": "Four-Dimensional paleomagnetic dataset: Late Neogene paleodirection and paleointensity results from the Erebus Volcanic Province, Antarctica", "datasets": [{"dataset_uid": "200162", "doi": "", "keywords": null, "people": null, "repository": "Magnetics Infomation Consortiums MagIC", "science_program": null, "title": "Four-Dimensional paleomagnetic dataset: Late Neogene paleodirection and paleointensity results from the Erebus Volcanic Province, Antarctica", "url": "https://www2.earthref.org/MagIC/16912/14b%20cd18-4c33-858e-de5eab74c528"}], "date_created": "Mon, 24 Aug 2020 00:00:00 GMT", "description": "A fundamental assumption in paleomagnetism is that a geocentric axial dipole (GAD) geomagnetic field structure extends to the ancient field. Global paleodirectional compilations that span 0 - 10 Myr support a GAD dominated field structure with minor non-GAD contributions, however, the paleointensity data over the same period do not.\r\n\r\nIn a GAD field, higher latitudes should preserve higher intensity, but the current database suggests that intensities are independent of latitude. To determine whether the seemingly \"low\" intensities from Antarctica reflect the ancient field, rather than low quality data or inadequate temporal sampling, we have conducted a new study of the paleomagnetic field in Antarctica. Our investigation focuses on the paleomagnetic field structure over the Late Neogene. We combined and re- analyzed new and published paleodirectional and paleointensity results from the Erebus volcanic province to recover directions from 111 sites that were both thermally and AF demagnetized and then subjected to a set of strict selection criteria and 28 paleointensity estimates from specimens that underwent the IZZI modified Thellier-Thellier experiment and were also subjected to a strict set of selection criteria. The paleopole (232.0oE, 86.91oN and \u03b195 of 5.37o) recovered from our paleodirectional study supports the GAD hypothesis and the scatter of the virtual geomagnetic poles is within the uncertainty of that predicted by TK03 paleosecular variation model. Our time averaged field strength estimate, 33.01 \u03bcT \u00b1 2.59 \u03bcT, is significantly lower than that expected for a GAD field estimated from the present field, but consistent with the long term average field.\r\n", "east": 169.38, "geometry": "POINT(165.762 -77.81165)", "instruments": null, "is_usap_dc": true, "keywords": "McMurdo; PALEOMAGNETISM; LABORATORY", "locations": "McMurdo", "north": -77.2233, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Tauxe, Lisa; Staudigel, Hubertus", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Magnetics Infomation Consortiums MagIC", "repositories": "Magnetics Infomation Consortiums MagIC", "science_programs": null, "south": -78.4, "title": "Finding the Missing Geomagnetic Dipole Signal in Global Pleointensity Data: Revisiting the High Southerly Latitudes", "uid": "p0010122", "west": 162.144}, {"awards": "1341729 Kirschvink, Joseph", "bounds_geometry": "POLYGON((-58.9 -63.5,-58.63 -63.5,-58.36 -63.5,-58.09 -63.5,-57.82 -63.5,-57.55 -63.5,-57.28 -63.5,-57.01 -63.5,-56.74 -63.5,-56.47 -63.5,-56.2 -63.5,-56.2 -63.62,-56.2 -63.74,-56.2 -63.86,-56.2 -63.98,-56.2 -64.1,-56.2 -64.22,-56.2 -64.34,-56.2 -64.46,-56.2 -64.58,-56.2 -64.7,-56.47 -64.7,-56.74 -64.7,-57.01 -64.7,-57.28 -64.7,-57.55 -64.7,-57.82 -64.7,-58.09 -64.7,-58.36 -64.7,-58.63 -64.7,-58.9 -64.7,-58.9 -64.58,-58.9 -64.46,-58.9 -64.34,-58.9 -64.22,-58.9 -64.1,-58.9 -63.98,-58.9 -63.86,-58.9 -63.74,-58.9 -63.62,-58.9 -63.5))", "dataset_titles": "2016 Paleomagnetic samples from the James Ross Basin, Antarctica; Expedition data of NBP1601", "datasets": [{"dataset_uid": "002665", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1601", "url": "https://www.rvdata.us/search/cruise/NBP1601"}, {"dataset_uid": "601094", "doi": "10.15784/601094", "keywords": "Antarctica; Geochronology; Geology/Geophysics - Other; Glaciology; James Ross Basin; Marine Geoscience; Marine Sediments", "people": "Kirschvink, Joseph; Skinner, Steven", "repository": "USAP-DC", "science_program": null, "title": "2016 Paleomagnetic samples from the James Ross Basin, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601094"}], "date_created": "Fri, 27 Apr 2018 00:00:00 GMT", "description": "Non-Technical Summary:\u003cbr/\u003e About 80 million years ago, the tip of the Antarctic Peninsula in the vicinity of what is now James Ross Island experienced an episode of rapid subsidence, creating a broad depositional basin that collected sediments eroding from the high mountains to the West. This depression accumulated a thick sequence of fossil-rich, organic-rich sediments of the sort that are known to preserve hydrocarbons, and for which Argentina, Chile, and the United Kingdom have overlapping territorial claims. The rocks preserve one of the highest resolution records of the biological and climatic events that led to the eventual death of the dinosaurs at the Cretaceous-Tertiary boundary (about 66 million years ago). A previous collaboration between scientists from the Instituto Ant\u00c3\u00a1rtico Argentino (IAA) and NSF-supported teams from Caltech and the University of Washington were able to show that this mass extinction event started nearly 50,000 years before the sudden impact of an asteroid. The asteroid obviously hit the biosphere hard, but something else knocked it off balance well before the asteroid hit. \u003cbr/\u003e A critical component of the previous work was the use of reversals in the polarity of the Earth?s magnetic field as a dating tool ? magnetostratigraphy. This allowed the teams to correlate the pattern of magnetic reversals from Antarctica with elsewhere on the planet. This includes data from a major volcanic eruption (a flood basalt province) that covered much of India 65 million years ago. The magnetic patterns indicate that the Antarctic extinction started with the first pulse of this massive eruption, which was also coincident with a rapid spike in polar temperature. The Argentinian and US collaborative teams will extend this magnetic polarity record back another ~ 20 million years in time, and expand it laterally to provide magnetic reversal time lines across the depositional basin. They hope to recover the end of the Cretaceous Long Normal interval, which is one of the most distinctive events in the history of Earth?s magnetic field. The new data should refine depositional models of the basin, allow better estimates of potential hydrocarbon reserves, and allow biotic events in the Southern hemisphere to be compared more precisely with those elsewhere on Earth. Other potential benefits of this work include exposing several US students and postdoctoral fellows to field based research in Antarctica, expanding the international aspects of this collaborative work via joint IAA/US field deployments, and follow-up laboratory investigations and personnel exchange of the Junior scientists.\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eTechnical Description of Project \u003cbr/\u003eThe proposed research will extend the stratigraphic record in the late Cretaceous and early Tertiary sediments (~ 83 to 65 Ma before present) of the James Ross Basin, Antarctica, using paleo-magnetic methods. Recent efforts provided new methods to analyze these rocks, yielding their primary magnetization, and producing both magnetic polarity patterns and paleomagnetic pole positions. This provided the first reliable age constraints for the younger sediments on Seymour Island, and quantified the sedimentation rate in this part of the basin. The new data will allow resolution of the stable, remnant magnetization of the sediments from the high deposition rate James Ross basin (Tobin et al., 2012), yielding precise chronology/stratigraphy. This approach will be extended to the re-maining portions of this sedimentary basin, and will allow quantitative estimates for tectonic and sedimentary processes between Cretaceous and Early Tertiary time. The proposed field work will refine the position of several geomagnetic reversals that occurred be-tween the end of the Cretaceous long normal period (Chron 34N, ~ 83 Ma), and the lower portion of Chron 31R (~ 71 Ma). Brandy Bay provides the best locality for calibrating the stratigraphic position of the top of the Cretaceous Long Normal Chron, C34N. Although the top of the Cretaceous long normal Chron is one of the most important correlation horizons in the entire geological timescale, it is not properly correlated to the southern hemisphere biostratigraphy. Locating this event, as well as the other reversals, will be a major addition to understanding of the geological history of the Antarctic Peninsula. These data will also help refine tectonic models for the evolution of the Southern continents, which will be of use across the board for workers in Cretaceous stratigraphy (including those involved in oil exploration).\u003cbr/\u003eThis research is a collaborative effort with Dr. Edward Olivero of the Centro Austral de Investigaciones Cientificas (CADIC/CONICET) and Prof. Augusto Rapalini of the University of Buenos Aires. The collaboration will include collection of samples on their future field excursions to important targets on and around James Ross Island, supported by the Argentinian Antarctic Program (IAA). Argentinian scientists and students will also be involved in the US Antarctic program deployments, proposed here for the R/V Laurence Gould, and will continue the pattern of joint international publication of the results.", "east": -56.2, "geometry": "POINT(-57.55 -64.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; R/V NBP; USAP-DC", "locations": null, "north": -63.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kirschvink, Joseph; Christensen, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -64.7, "title": "Paleomagnetism and Magnetostratigraphy of the James Ross Basin, Antarctica", "uid": "p0000276", "west": -58.9}, {"awards": "0537609 Gee, Jeffrey", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "An Integrated Geomagnetic and Petrologic Study of the Dufek Complex", "datasets": [{"dataset_uid": "600053", "doi": "10.15784/600053", "keywords": "Antarctica; Dufek Complex; Geology/Geophysics - Other; Paleomagnetism; Solid Earth", "people": "Gee, Jeffrey", "repository": "USAP-DC", "science_program": null, "title": "An Integrated Geomagnetic and Petrologic Study of the Dufek Complex", "url": "https://www.usap-dc.org/view/dataset/600053"}], "date_created": "Tue, 20 Dec 2011 00:00:00 GMT", "description": "This project studies remnant magnetization in igneous rocks from the Dufek igneous complex, Antarctica. Its primary goal is to understand variations in the Earth\u0027s magnetic field during the Mesozoic Dipole Low (MDL), a period when the Earth\u0027s magnetic field underwent dramatic weakening and rapid reversals. This work will resolve the MDL\u0027s timing and nature, and assess connections between reversal rate, geomagnetic intensity and directional variability, and large-scale geodynamic processes. The project also includes petrologic studies to determine cooling rate effects on magnetic signatures, and understand assembly of the Dufek as an igneous body. Poorly studied, the Dufek is amongst the world\u0027s largest intrusions and its formation is connected to the break-up of Gondwana. \u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this project include graduate and undergraduate education and international collaboration with a German and Chilean IPY project.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Gee, Jeffrey", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: An Integrated Geomagnetic and Petrologic Study of the Dufek Complex", "uid": "p0000510", "west": -180.0}, {"awards": "0126279 Lawver, Lawrence; 0125624 Wilson, Terry", "bounds_geometry": "POLYGON((163.69456 -75.04911,164.525266 -75.04911,165.355972 -75.04911,166.186678 -75.04911,167.017384 -75.04911,167.84809 -75.04911,168.678796 -75.04911,169.509502 -75.04911,170.340208 -75.04911,171.170914 -75.04911,172.00162 -75.04911,172.00162 -75.3293,172.00162 -75.60949,172.00162 -75.88968,172.00162 -76.16987,172.00162 -76.45006,172.00162 -76.73025,172.00162 -77.01044,172.00162 -77.29063,172.00162 -77.57082,172.00162 -77.85101,171.170914 -77.85101,170.340208 -77.85101,169.509502 -77.85101,168.678796 -77.85101,167.84809 -77.85101,167.017384 -77.85101,166.186678 -77.85101,165.355972 -77.85101,164.525266 -77.85101,163.69456 -77.85101,163.69456 -77.57082,163.69456 -77.29063,163.69456 -77.01044,163.69456 -76.73025,163.69456 -76.45006,163.69456 -76.16987,163.69456 -75.88968,163.69456 -75.60949,163.69456 -75.3293,163.69456 -75.04911))", "dataset_titles": "Expedition Data; NBP0401 data", "datasets": [{"dataset_uid": "001664", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0401"}, {"dataset_uid": "000106", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "NBP0401 data", "url": "https://www.rvdata.us/search/cruise/NBP0401"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate the tectonic development of the southwestern Ross Sea region. Displacements between East and West Antarctica have long been proposed based on global plate circuits, apparent hot spot motions, interpretations of seafloor magnetic anomalies, paleomagnetism, and on geologic grounds. Such motions require plate boundaries crossing Antarctica, yet these boundaries have never been explicitly defined. This project will attempt to delineate the late Cenozoic - active boundary between East and West Antarctica along the Terror Rift in the western Ross Sea, where young structures have been identified, continuity between active extension and intracontinental structures can be established, and where accessibility via ship will allow new key data sets to be acquired. We will use multi-source marine and airborne geophysical data to map the fault patterns and volcanic structure along the eastern margin of the Terror Rift. The orientations of volcanic fissures and seamount alignments on the seafloor will be mapped using multibeam bathymetry. The volcanic alignments will show the regional extension or shear directions across the Terror Rift and the orientations of associated crustal stresses. Swath bathymetry and single channel seismic data will be used to document neotectonic fault patterns and the eastern limit of recent faulting. Delineation of neotectonic fault patterns will demonstrate whether the eastern margin of the Terror Rift forms a continuous boundary and whether the rift itself can be linked with postulated strike-slip faults in the northwestern Ross Sea. Seafloor findings from this project will be combined with fault kinematic and stress field determinations from the surrounding volcanic islands and the Transantarctic Mountains. The integrated results will test the propositions that the eastern boundary of the Terror Rift forms the limit of the major, late Cenozoic -active structures through the Ross Sea and that Terror Rift kinematics involve dextral transtension linked to the right-lateral strike-slip faulting to the north. These results will help constrain the kinematic and dynamic links between the West Antarctic rift system and Southern Ocean structures and any related motions between East and West Antarctica. In the first year, a collaborative structural analysis of existing multichannel and single channel seismic profiles and aeromagnetic data over the Terror Rift will be conducted. The location of volcanic vents or fissures and any fault scarps on the sea floor will be identified and a preliminary interpretation of the age and kinematics of deformation in the Terror Rift will be produced. Late in the second year, a one-month cruise on RVIB N.B. Palmer will carry out multibeam bathymetric and sidescan sonar mapping of selected portions of the seafloor of Terror Rift. Gravity, magnetics, seismic reflection and Bathy2000 3.5 kHz sub-bottom profile data will also be collected across the rift. In the third year, we will use these multisource data to map the orientations and forms of volcanic bodies and the extent and geometry of neotectonic faulting associated with the Terror Rift. The project will: 1) complete a map of neotectonic faults and volcanic structures in the Terror Rift; 2) interpret the structural pattern to derive the motions and stresses associated with development of the rift; 3) compare Terror Rift structures with faults and lineaments mapped in the Transantarctic Mountains to improve age constraints on the structures; and 4) integrate the late Cenozoic structural interpretations from the western Ross Sea with Southern Ocean plate boundary kinematics.", "east": 172.00162, "geometry": "POINT(167.84809 -76.45006)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": true, "keywords": "R/V NBP", "locations": null, "north": -75.04911, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Wilson, Terry", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.85101, "title": "Collaborative Research: Neotectonic Structure of Terror Rift, Western Ross Sea", "uid": "p0000111", "west": 163.69456}, {"awards": "0229403 Tauxe, Lisa", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Paleomagnetism and40Ar/39Ar ages from volcanics extruded during the Matuyama and Brunhes Chrons near McMurdo Sound, Antarctica", "datasets": [{"dataset_uid": "000116", "doi": "", "keywords": null, "people": null, "repository": "EarthRef", "science_program": null, "title": "Paleomagnetism and40Ar/39Ar ages from volcanics extruded during the Matuyama and Brunhes Chrons near McMurdo Sound, Antarctica", "url": "http://dx.doi.org/10.7288/V4/MAGIC/12395"}], "date_created": "Tue, 01 Sep 2009 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate Earth\u0027s magnetic field over the past 5 million years in order to test models of Earth\u0027s geomagnetic dynamo. Paleomagnetic data (directions of ancient geomagnetic fields obtained from rocks) play an important role in a variety of geophysical studies of the Earth, including plate tectonic reconstructions, magnetostratigraphy, and studies of the behavior of the ancient geomagnetic field (which is called paleo-geomagnetism). Over the past four decades the key assumption in many paleomagnetic studies has been that the average direction of the paleomagnetic field corresponds to one that would have been produced by a geocentric axial dipole (GAD) (analogous to a bar magnet at the center of the Earth), and that paleoinclinations (the dip of magnetic directions from rocks) provide data of sufficient accuracy to enable their use in plate reconstructions. A recent re-examination of the fundamental data underlying models of the time averaged field has shown that the most glaring deficiency in the existing data base is a dearth of high quality data, including paleointensity information, from high latitudes. This project will undertake a sampling and laboratory program on suitable sites from the Mt. Erebus Volcanic Province (Antarctica) that will produce the quality data from high southern latitudes that are essential to an enhanced understanding of the time averaged field and its long term variations.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Tauxe, Lisa; Staudigel, Hubertus; Constable, Catherine; Koppers, Anthony", "platforms": "Not provided", "repo": "EarthRef", "repositories": "EarthRef", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Geomagnetic Field as Recorded in the Mt Erebus Volcanic Province: Key to Field Structure at High Southern Latitudes", "uid": "p0000228", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Linking Marine and Terrestrial Sedimentary Evidence for Plio-pleistocene Variability of Weddell Embayment and Antarctic Peninsula Glaciation
|
2302832 |
2023-07-12 | Reilly, Brendan | The potential for future sea level rise from melting and collapse of Antarctic ice sheets and glaciers is concerning. We can improve our understanding of how water is exchanged between Antarctic ice sheets and the ocean by studying how ice sheets behaved in past climates, especially conditions that were similar to or warmer than those at present. For this project, the research team will document Antarctica's response across an interval when Earth transitioned from the warm Pliocene into the Pleistocene ice ages by combining marine and land evidence for glacier variations from sites near the Antarctic Peninsula, complimented by detailed work on timescales and fossil evidence for environmental change. An important goal is to test whether Antarctica's glaciers changed at the same time as glaciers in the Northern Hemisphere as Earth's most recent Ice Age intensified, or alternatively responded to regional climate forcing in the Southern Hemisphere. Eleven investigators from seven US institutions, as well as Argentine collaborators, will study new sediment cores from the International Ocean Discovery Program, as well as legacy cores from that program and on-land outcrops on James Ross Island. The group embraces a vertically integrated research program that allows high school, undergraduate, graduate, post-docs and faculty to work together on the same projects. This structure leverages the benefits of near-peer mentoring and the development of a robust collaborative research network while allowing all participants to take ownership of different parts of the project. All members of the team are firmly committed to attracting researchers from under-represented groups and will do this through existing channels as well as via co-creating programming that centers the perspectives of diverse students in conversations about sea-level rise and climate change. The proposed research seeks to understand phasing between Northern and Southern Hemisphere glacier and climate changes, as a means to understand drivers and teleconnections. The dynamics of past Antarctic glaciation can be studied using the unique isotope geochemical and mineralogic fingerprints from glacial sectors tied to a well-constrained time model for the stratigraphic successions. The proposed work would further refine the stratigraphic context through coupled biostratigraphic and magnetostratigraphic work. The magnitude of iceberg calving and paths of icebergs will be revealed using the flux, geochemical and mineralogic signatures, and 40Ar/39Ar and U-Pb geochronology of ice-rafted detritus. These provenance tracers will establish which sectors of Antarctica's ice sheets are more vulnerable to collapse, and the timing and pacing of these events will be revealed by their stratigraphic context. Additionally, the team will work with Argentine collaborators to connect the marine and terrestrial records by studying glacier records intercalated with volcanic flows on James Ross Island. These new constraints will be integrated with a state of the art ice-sheet model to link changes in ice dynamics with their underlying causes. Together, these tight stratigraphic constraints, geochemical signatures, and ice-sheet model simulations will provide a means to compare to the global records of climate change, understand their primary drivers, and elucidate the role of the Antarctic ice sheet in a major, global climatic shift from the Pliocene into the Pleistocene. | POLYGON((-70 -55,-67 -55,-64 -55,-61 -55,-58 -55,-55 -55,-52 -55,-49 -55,-46 -55,-43 -55,-40 -55,-40 -56.1,-40 -57.2,-40 -58.3,-40 -59.4,-40 -60.5,-40 -61.6,-40 -62.7,-40 -63.8,-40 -64.9,-40 -66,-43 -66,-46 -66,-49 -66,-52 -66,-55 -66,-58 -66,-61 -66,-64 -66,-67 -66,-70 -66,-70 -64.9,-70 -63.8,-70 -62.7,-70 -61.6,-70 -60.5,-70 -59.4,-70 -58.3,-70 -57.2,-70 -56.1,-70 -55)) | POINT(-55 -60.5) | false | false | ||||||
Finding the Missing Geomagnetic Dipole Signal in Global Pleointensity Data: Revisiting the High Southerly Latitudes
|
1541285 |
2020-08-24 | Tauxe, Lisa; Staudigel, Hubertus |
|
A fundamental assumption in paleomagnetism is that a geocentric axial dipole (GAD) geomagnetic field structure extends to the ancient field. Global paleodirectional compilations that span 0 - 10 Myr support a GAD dominated field structure with minor non-GAD contributions, however, the paleointensity data over the same period do not. In a GAD field, higher latitudes should preserve higher intensity, but the current database suggests that intensities are independent of latitude. To determine whether the seemingly "low" intensities from Antarctica reflect the ancient field, rather than low quality data or inadequate temporal sampling, we have conducted a new study of the paleomagnetic field in Antarctica. Our investigation focuses on the paleomagnetic field structure over the Late Neogene. We combined and re- analyzed new and published paleodirectional and paleointensity results from the Erebus volcanic province to recover directions from 111 sites that were both thermally and AF demagnetized and then subjected to a set of strict selection criteria and 28 paleointensity estimates from specimens that underwent the IZZI modified Thellier-Thellier experiment and were also subjected to a strict set of selection criteria. The paleopole (232.0oE, 86.91oN and α95 of 5.37o) recovered from our paleodirectional study supports the GAD hypothesis and the scatter of the virtual geomagnetic poles is within the uncertainty of that predicted by TK03 paleosecular variation model. Our time averaged field strength estimate, 33.01 μT ± 2.59 μT, is significantly lower than that expected for a GAD field estimated from the present field, but consistent with the long term average field. | POLYGON((162.144 -77.2233,162.8676 -77.2233,163.5912 -77.2233,164.3148 -77.2233,165.0384 -77.2233,165.762 -77.2233,166.4856 -77.2233,167.2092 -77.2233,167.9328 -77.2233,168.6564 -77.2233,169.38 -77.2233,169.38 -77.34097,169.38 -77.45864,169.38 -77.57631,169.38 -77.69398,169.38 -77.81165,169.38 -77.92932,169.38 -78.04699,169.38 -78.16466,169.38 -78.28233,169.38 -78.4,168.6564 -78.4,167.9328 -78.4,167.2092 -78.4,166.4856 -78.4,165.762 -78.4,165.0384 -78.4,164.3148 -78.4,163.5912 -78.4,162.8676 -78.4,162.144 -78.4,162.144 -78.28233,162.144 -78.16466,162.144 -78.04699,162.144 -77.92932,162.144 -77.81165,162.144 -77.69398,162.144 -77.57631,162.144 -77.45864,162.144 -77.34097,162.144 -77.2233)) | POINT(165.762 -77.81165) | false | false | |||||
Paleomagnetism and Magnetostratigraphy of the James Ross Basin, Antarctica
|
1341729 |
2018-04-27 | Kirschvink, Joseph; Christensen, John |
|
Non-Technical Summary:<br/> About 80 million years ago, the tip of the Antarctic Peninsula in the vicinity of what is now James Ross Island experienced an episode of rapid subsidence, creating a broad depositional basin that collected sediments eroding from the high mountains to the West. This depression accumulated a thick sequence of fossil-rich, organic-rich sediments of the sort that are known to preserve hydrocarbons, and for which Argentina, Chile, and the United Kingdom have overlapping territorial claims. The rocks preserve one of the highest resolution records of the biological and climatic events that led to the eventual death of the dinosaurs at the Cretaceous-Tertiary boundary (about 66 million years ago). A previous collaboration between scientists from the Instituto Antártico Argentino (IAA) and NSF-supported teams from Caltech and the University of Washington were able to show that this mass extinction event started nearly 50,000 years before the sudden impact of an asteroid. The asteroid obviously hit the biosphere hard, but something else knocked it off balance well before the asteroid hit. <br/> A critical component of the previous work was the use of reversals in the polarity of the Earth?s magnetic field as a dating tool ? magnetostratigraphy. This allowed the teams to correlate the pattern of magnetic reversals from Antarctica with elsewhere on the planet. This includes data from a major volcanic eruption (a flood basalt province) that covered much of India 65 million years ago. The magnetic patterns indicate that the Antarctic extinction started with the first pulse of this massive eruption, which was also coincident with a rapid spike in polar temperature. The Argentinian and US collaborative teams will extend this magnetic polarity record back another ~ 20 million years in time, and expand it laterally to provide magnetic reversal time lines across the depositional basin. They hope to recover the end of the Cretaceous Long Normal interval, which is one of the most distinctive events in the history of Earth?s magnetic field. The new data should refine depositional models of the basin, allow better estimates of potential hydrocarbon reserves, and allow biotic events in the Southern hemisphere to be compared more precisely with those elsewhere on Earth. Other potential benefits of this work include exposing several US students and postdoctoral fellows to field based research in Antarctica, expanding the international aspects of this collaborative work via joint IAA/US field deployments, and follow-up laboratory investigations and personnel exchange of the Junior scientists.<br/><br/><br/>Technical Description of Project <br/>The proposed research will extend the stratigraphic record in the late Cretaceous and early Tertiary sediments (~ 83 to 65 Ma before present) of the James Ross Basin, Antarctica, using paleo-magnetic methods. Recent efforts provided new methods to analyze these rocks, yielding their primary magnetization, and producing both magnetic polarity patterns and paleomagnetic pole positions. This provided the first reliable age constraints for the younger sediments on Seymour Island, and quantified the sedimentation rate in this part of the basin. The new data will allow resolution of the stable, remnant magnetization of the sediments from the high deposition rate James Ross basin (Tobin et al., 2012), yielding precise chronology/stratigraphy. This approach will be extended to the re-maining portions of this sedimentary basin, and will allow quantitative estimates for tectonic and sedimentary processes between Cretaceous and Early Tertiary time. The proposed field work will refine the position of several geomagnetic reversals that occurred be-tween the end of the Cretaceous long normal period (Chron 34N, ~ 83 Ma), and the lower portion of Chron 31R (~ 71 Ma). Brandy Bay provides the best locality for calibrating the stratigraphic position of the top of the Cretaceous Long Normal Chron, C34N. Although the top of the Cretaceous long normal Chron is one of the most important correlation horizons in the entire geological timescale, it is not properly correlated to the southern hemisphere biostratigraphy. Locating this event, as well as the other reversals, will be a major addition to understanding of the geological history of the Antarctic Peninsula. These data will also help refine tectonic models for the evolution of the Southern continents, which will be of use across the board for workers in Cretaceous stratigraphy (including those involved in oil exploration).<br/>This research is a collaborative effort with Dr. Edward Olivero of the Centro Austral de Investigaciones Cientificas (CADIC/CONICET) and Prof. Augusto Rapalini of the University of Buenos Aires. The collaboration will include collection of samples on their future field excursions to important targets on and around James Ross Island, supported by the Argentinian Antarctic Program (IAA). Argentinian scientists and students will also be involved in the US Antarctic program deployments, proposed here for the R/V Laurence Gould, and will continue the pattern of joint international publication of the results. | POLYGON((-58.9 -63.5,-58.63 -63.5,-58.36 -63.5,-58.09 -63.5,-57.82 -63.5,-57.55 -63.5,-57.28 -63.5,-57.01 -63.5,-56.74 -63.5,-56.47 -63.5,-56.2 -63.5,-56.2 -63.62,-56.2 -63.74,-56.2 -63.86,-56.2 -63.98,-56.2 -64.1,-56.2 -64.22,-56.2 -64.34,-56.2 -64.46,-56.2 -64.58,-56.2 -64.7,-56.47 -64.7,-56.74 -64.7,-57.01 -64.7,-57.28 -64.7,-57.55 -64.7,-57.82 -64.7,-58.09 -64.7,-58.36 -64.7,-58.63 -64.7,-58.9 -64.7,-58.9 -64.58,-58.9 -64.46,-58.9 -64.34,-58.9 -64.22,-58.9 -64.1,-58.9 -63.98,-58.9 -63.86,-58.9 -63.74,-58.9 -63.62,-58.9 -63.5)) | POINT(-57.55 -64.1) | false | false | |||||
Collaborative Research: An Integrated Geomagnetic and Petrologic Study of the Dufek Complex
|
0537609 |
2011-12-20 | Gee, Jeffrey |
|
This project studies remnant magnetization in igneous rocks from the Dufek igneous complex, Antarctica. Its primary goal is to understand variations in the Earth's magnetic field during the Mesozoic Dipole Low (MDL), a period when the Earth's magnetic field underwent dramatic weakening and rapid reversals. This work will resolve the MDL's timing and nature, and assess connections between reversal rate, geomagnetic intensity and directional variability, and large-scale geodynamic processes. The project also includes petrologic studies to determine cooling rate effects on magnetic signatures, and understand assembly of the Dufek as an igneous body. Poorly studied, the Dufek is amongst the world's largest intrusions and its formation is connected to the break-up of Gondwana. <br/><br/>The broader impacts of this project include graduate and undergraduate education and international collaboration with a German and Chilean IPY project. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||
Collaborative Research: Neotectonic Structure of Terror Rift, Western Ross Sea
|
0126279 0125624 |
2010-05-04 | Wilson, Terry |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate the tectonic development of the southwestern Ross Sea region. Displacements between East and West Antarctica have long been proposed based on global plate circuits, apparent hot spot motions, interpretations of seafloor magnetic anomalies, paleomagnetism, and on geologic grounds. Such motions require plate boundaries crossing Antarctica, yet these boundaries have never been explicitly defined. This project will attempt to delineate the late Cenozoic - active boundary between East and West Antarctica along the Terror Rift in the western Ross Sea, where young structures have been identified, continuity between active extension and intracontinental structures can be established, and where accessibility via ship will allow new key data sets to be acquired. We will use multi-source marine and airborne geophysical data to map the fault patterns and volcanic structure along the eastern margin of the Terror Rift. The orientations of volcanic fissures and seamount alignments on the seafloor will be mapped using multibeam bathymetry. The volcanic alignments will show the regional extension or shear directions across the Terror Rift and the orientations of associated crustal stresses. Swath bathymetry and single channel seismic data will be used to document neotectonic fault patterns and the eastern limit of recent faulting. Delineation of neotectonic fault patterns will demonstrate whether the eastern margin of the Terror Rift forms a continuous boundary and whether the rift itself can be linked with postulated strike-slip faults in the northwestern Ross Sea. Seafloor findings from this project will be combined with fault kinematic and stress field determinations from the surrounding volcanic islands and the Transantarctic Mountains. The integrated results will test the propositions that the eastern boundary of the Terror Rift forms the limit of the major, late Cenozoic -active structures through the Ross Sea and that Terror Rift kinematics involve dextral transtension linked to the right-lateral strike-slip faulting to the north. These results will help constrain the kinematic and dynamic links between the West Antarctic rift system and Southern Ocean structures and any related motions between East and West Antarctica. In the first year, a collaborative structural analysis of existing multichannel and single channel seismic profiles and aeromagnetic data over the Terror Rift will be conducted. The location of volcanic vents or fissures and any fault scarps on the sea floor will be identified and a preliminary interpretation of the age and kinematics of deformation in the Terror Rift will be produced. Late in the second year, a one-month cruise on RVIB N.B. Palmer will carry out multibeam bathymetric and sidescan sonar mapping of selected portions of the seafloor of Terror Rift. Gravity, magnetics, seismic reflection and Bathy2000 3.5 kHz sub-bottom profile data will also be collected across the rift. In the third year, we will use these multisource data to map the orientations and forms of volcanic bodies and the extent and geometry of neotectonic faulting associated with the Terror Rift. The project will: 1) complete a map of neotectonic faults and volcanic structures in the Terror Rift; 2) interpret the structural pattern to derive the motions and stresses associated with development of the rift; 3) compare Terror Rift structures with faults and lineaments mapped in the Transantarctic Mountains to improve age constraints on the structures; and 4) integrate the late Cenozoic structural interpretations from the western Ross Sea with Southern Ocean plate boundary kinematics. | POLYGON((163.69456 -75.04911,164.525266 -75.04911,165.355972 -75.04911,166.186678 -75.04911,167.017384 -75.04911,167.84809 -75.04911,168.678796 -75.04911,169.509502 -75.04911,170.340208 -75.04911,171.170914 -75.04911,172.00162 -75.04911,172.00162 -75.3293,172.00162 -75.60949,172.00162 -75.88968,172.00162 -76.16987,172.00162 -76.45006,172.00162 -76.73025,172.00162 -77.01044,172.00162 -77.29063,172.00162 -77.57082,172.00162 -77.85101,171.170914 -77.85101,170.340208 -77.85101,169.509502 -77.85101,168.678796 -77.85101,167.84809 -77.85101,167.017384 -77.85101,166.186678 -77.85101,165.355972 -77.85101,164.525266 -77.85101,163.69456 -77.85101,163.69456 -77.57082,163.69456 -77.29063,163.69456 -77.01044,163.69456 -76.73025,163.69456 -76.45006,163.69456 -76.16987,163.69456 -75.88968,163.69456 -75.60949,163.69456 -75.3293,163.69456 -75.04911)) | POINT(167.84809 -76.45006) | false | false | |||||
Collaborative Research: Geomagnetic Field as Recorded in the Mt Erebus Volcanic Province: Key to Field Structure at High Southern Latitudes
|
0229403 |
2009-09-01 | Tauxe, Lisa; Staudigel, Hubertus; Constable, Catherine; Koppers, Anthony |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate Earth's magnetic field over the past 5 million years in order to test models of Earth's geomagnetic dynamo. Paleomagnetic data (directions of ancient geomagnetic fields obtained from rocks) play an important role in a variety of geophysical studies of the Earth, including plate tectonic reconstructions, magnetostratigraphy, and studies of the behavior of the ancient geomagnetic field (which is called paleo-geomagnetism). Over the past four decades the key assumption in many paleomagnetic studies has been that the average direction of the paleomagnetic field corresponds to one that would have been produced by a geocentric axial dipole (GAD) (analogous to a bar magnet at the center of the Earth), and that paleoinclinations (the dip of magnetic directions from rocks) provide data of sufficient accuracy to enable their use in plate reconstructions. A recent re-examination of the fundamental data underlying models of the time averaged field has shown that the most glaring deficiency in the existing data base is a dearth of high quality data, including paleointensity information, from high latitudes. This project will undertake a sampling and laboratory program on suitable sites from the Mt. Erebus Volcanic Province (Antarctica) that will produce the quality data from high southern latitudes that are essential to an enhanced understanding of the time averaged field and its long term variations. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false |