{"dp_type": "Project", "free_text": "OXYGEN COMPOUNDS"}
[{"awards": "2032463 Talghader, Joseph; 2032473 Kurbatov, Andrei", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Visual, thermal, chemical, and stable isotope effects of near-infrared laser cutting on freezer ice", "datasets": [{"dataset_uid": "601753", "doi": "10.15784/601753", "keywords": "Antarctica; Sampling", "people": "Mah, Merlin; Kurbatov, Andrei V.; Talghader, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Visual, thermal, chemical, and stable isotope effects of near-infrared laser cutting on freezer ice", "url": "https://www.usap-dc.org/view/dataset/601753"}], "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "Overview\u003c/br\u003e\nIt is proposed that laser cutting technology can be used to rapidly extract high quality ice samples from borehole walls. The technology applies to both existing boreholes and newly drilled ones, even enabling scientists to obtain samples using non\u2010coring mechanical drills. Since the instrumentation is highly portable, a field team of three persons might take no longer than a few days in the field to extract ice, and samples from a critical time period could be extracted from multiple locations in a single field season.\n\nThis pilot program will investigate and validate the technology of laser sampling. It is beneficial to use fiber optics to convey light in borehole instrumentation rather than attempting to package a complete laser system for travel down a borehole, so the cutting laser and wavelength (1.07Pm) are chosen with such engineering in mind. The primary scientific goals of the program are to: 1) determine optimum cutting conditions in terms of laser power and operating conditions, 2) quantifying the effects of residual meltwater that remain in the cut slot after a cut so that re-cutting needs can be predicted or mitigated, 3) designing and testing mechanical structures to retract samples from blocks of ice once cut, and 4) analyzing the composition and crystal structure of ice near a cut slot to determine the impacted volume (if any) of ice and temperatures where scientific readings might be affected by the sampling process.\n\u003c/br\u003e\u003c/br\u003e\nIntellectual Merits\u003c/br\u003e\nThe collection of deep ice from the Polar Ice Sheets involves large amounts of time, effort, and expense. Often, the most important information is held in very small volumes of core, and while replicate coring can supplement this core, there is often a need to retrieve additional ice samples based on recent scientific findings or borehole logging at a site. In addition, there is currently no easy method of extracting ice from boreholes drilled by non\u2010coring mechanical drills, which are often much faster, lighter, and less expensive to operate. There are numerous specific projects that could immediately benefit from laser sampling including sampling ice overlaying buried impact craters and bolides, filling critical gaps in the chemical record in damaged core sections from Siple Dome, obtaining oldest ice cores from brittle sections near the surface of the Allan Hills blue ice area, where coring drills apply stresses that may fracture the ice, and replacing core whose value has degraded due to time and depressurization. This program builds on a prior engineering advances in optical fiber\u2010based logging technology, developed previously for Siple Dome borehole logging.\n\u003c/br\u003e\u003c/br\u003e\nBroader Impact\u003c/br\u003e\nLaser sampling would advance numerous fields interfaced with glaciology and ice core studies. These include climate and paleoenvironmental science, volcanology, and human history where large volumes of ice are crucial to extract ultra\u2010high resolution records of natural and anthropogenic emissions. Potentially the principle of laser sampling could be used to directly sample and study ice on other planets or their satellites.\nThis program encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training postdoctoral scientists, graduate students, and advanced undergraduates. The program will include a research opportunity for one or more middle school teachers through a Research Experience for Teachers program with one of the local school districts of the Twin Cities area. The teacher(s) will assist the investigators in the analysis of scattered laser light in glacier ice, and will set up a small experiment at various visible wavelengths to measure scattering constants. These experiments have been chosen because they can easily translate into classroom demonstrations and hands\u2010on activities using eye-safe visible- light LED sources and large samples of artificial ice. The teacher(s) will also produce a lesson plan on basic optics, glacial ice, or polar science as a deliverable.\nThis proposal does not involve field work.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Amd/Us; Laser Cutting; Ice Core; USA/NSF; AMD; SULFATE; FIELD SURVEYS; OXYGEN COMPOUNDS; USAP-DC; LABORATORY; Sulfate", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Instrumentation and Facilities; Antarctic Instrumentation and Facilities", "paleo_time": null, "persons": "Talghader, Joseph; Kurbatov, Andrei V.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Laser Cutting Technology for Borehole Sampling", "uid": "p0010218", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Laser Cutting Technology for Borehole Sampling
|
2032463 2032473 |
2021-06-30 | Talghader, Joseph; Kurbatov, Andrei V. |
|
Overview</br> It is proposed that laser cutting technology can be used to rapidly extract high quality ice samples from borehole walls. The technology applies to both existing boreholes and newly drilled ones, even enabling scientists to obtain samples using non‐coring mechanical drills. Since the instrumentation is highly portable, a field team of three persons might take no longer than a few days in the field to extract ice, and samples from a critical time period could be extracted from multiple locations in a single field season. This pilot program will investigate and validate the technology of laser sampling. It is beneficial to use fiber optics to convey light in borehole instrumentation rather than attempting to package a complete laser system for travel down a borehole, so the cutting laser and wavelength (1.07Pm) are chosen with such engineering in mind. The primary scientific goals of the program are to: 1) determine optimum cutting conditions in terms of laser power and operating conditions, 2) quantifying the effects of residual meltwater that remain in the cut slot after a cut so that re-cutting needs can be predicted or mitigated, 3) designing and testing mechanical structures to retract samples from blocks of ice once cut, and 4) analyzing the composition and crystal structure of ice near a cut slot to determine the impacted volume (if any) of ice and temperatures where scientific readings might be affected by the sampling process. </br></br> Intellectual Merits</br> The collection of deep ice from the Polar Ice Sheets involves large amounts of time, effort, and expense. Often, the most important information is held in very small volumes of core, and while replicate coring can supplement this core, there is often a need to retrieve additional ice samples based on recent scientific findings or borehole logging at a site. In addition, there is currently no easy method of extracting ice from boreholes drilled by non‐coring mechanical drills, which are often much faster, lighter, and less expensive to operate. There are numerous specific projects that could immediately benefit from laser sampling including sampling ice overlaying buried impact craters and bolides, filling critical gaps in the chemical record in damaged core sections from Siple Dome, obtaining oldest ice cores from brittle sections near the surface of the Allan Hills blue ice area, where coring drills apply stresses that may fracture the ice, and replacing core whose value has degraded due to time and depressurization. This program builds on a prior engineering advances in optical fiber‐based logging technology, developed previously for Siple Dome borehole logging. </br></br> Broader Impact</br> Laser sampling would advance numerous fields interfaced with glaciology and ice core studies. These include climate and paleoenvironmental science, volcanology, and human history where large volumes of ice are crucial to extract ultra‐high resolution records of natural and anthropogenic emissions. Potentially the principle of laser sampling could be used to directly sample and study ice on other planets or their satellites. This program encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training postdoctoral scientists, graduate students, and advanced undergraduates. The program will include a research opportunity for one or more middle school teachers through a Research Experience for Teachers program with one of the local school districts of the Twin Cities area. The teacher(s) will assist the investigators in the analysis of scattered laser light in glacier ice, and will set up a small experiment at various visible wavelengths to measure scattering constants. These experiments have been chosen because they can easily translate into classroom demonstrations and hands‐on activities using eye-safe visible- light LED sources and large samples of artificial ice. The teacher(s) will also produce a lesson plan on basic optics, glacial ice, or polar science as a deliverable. This proposal does not involve field work. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false |