{"dp_type": "Project", "free_text": "NBP9802"}
[{"awards": "9530382 Smith, Walker; 9896290 Smith, Walker; 9530398 Anderson, Robert", "bounds_geometry": "POLYGON((-179.9999 -43.5646,-143.99993 -43.5646,-107.99996 -43.5646,-71.99999 -43.5646,-36.00002 -43.5646,-0.000050000000016 -43.5646,35.99992 -43.5646,71.99989 -43.5646,107.99986 -43.5646,143.99983 -43.5646,179.9998 -43.5646,179.9998 -47.013473,179.9998 -50.462346,179.9998 -53.911219,179.9998 -57.360092,179.9998 -60.808965,179.9998 -64.257838,179.9998 -67.706711,179.9998 -71.155584,179.9998 -74.604457,179.9998 -78.05333,143.99983 -78.05333,107.99986 -78.05333,71.99989 -78.05333,35.99992 -78.05333,-0.000049999999987 -78.05333,-36.00002 -78.05333,-71.99999 -78.05333,-107.99996 -78.05333,-143.99993 -78.05333,-179.9999 -78.05333,-179.9999 -74.604457,-179.9999 -71.155584,-179.9999 -67.706711,-179.9999 -64.257838,-179.9999 -60.808965,-179.9999 -57.360092,-179.9999 -53.911219,-179.9999 -50.462346,-179.9999 -47.013473,-179.9999 -43.5646))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002162", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9604A"}, {"dataset_uid": "002164", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9604"}, {"dataset_uid": "002138", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9708"}, {"dataset_uid": "001874", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9802"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "95-30398 Anderson This research project is part of the US Joint Global Ocean Flux Study (JGOFS) Southern Ocean Program aimed at (1) a better understanding of the fluxes of carbon, both organic and inorganic, in the Southern Ocean, (2) identifying the physical, ecological and biogeochemical factors and processes which regulate the magnitude and variability of these fluxes, and (3) placing these fluxes into the context of the contemporary global carbon cycle. The overall objectives of JGOFS are to determine and understand processes controlling the time-varying fluxes of carbon and associated biogenic elements, and to predict the response of marine biogeochemical processes to climate change. The Southern Ocean is critical in the global carbon cycle, as judged by its size and the physical processes which occur in it (e.g., deep and intermediate water formation), but its present quantitative role is uncertain. JGOFS objectives for the Southern Ocean study are as follows: 1) to constrain the fluxes of carbon (organic and inorganic) and to place these fluxes in the context of the contemporary carbon cycle; 2) to identify the factors and processes which regulate the magnitude and variability of primary productivity and the fate of biogenic matter; 3) to determine the response of the Southern Ocean to natural climate perturbations; and 4) to predict the response of the Southern Ocean to climate change. In order to successfully address these objectives, a large field program has been designed to provide various investigators the opportunity to test specific hypotheses which relate to these broadly-defined objectives. We expect the field test to begin in September 1996, and last through March 1998 using two ships, the R.V. Palmer, and the R.V. Thompson. As most of the investigators will use hydrographic and nutrient data from these cruises, this proposal requests funds for the support of the analysis of nutrient concentrations during these thirteen crui ses. A team of oceanographic experts from a variety of institutions has been assembled to complete these analyses; furthermore, the data will be scrutinized for errors and provided in a timely fashion to all PI\u0027s in the project, as well as to the relevant oceanographic data storage facilities. The hydrography and coring groups have been put together using the successful model for the Arabian Sea JGOFS study, and in conjunction with the nutrient data (supported under a separate proposal), will form a large portion of the Southern Ocean JGOFS database which both field investigators and modelers will use to clarify the role of the Southern Ocean in the global carbon cycle.", "east": 179.9998, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.5646, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Anderson, Robert; Smith, Walker; Honjo, Susumu", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -78.05333, "title": "Management and Scientific Service in Support of the U.S. JGOFS Southern Ocean Process Study: Hydrography, Coring and Site Survey", "uid": "p0000629", "west": -179.9999}, {"awards": "9530379 Anderson, Robert", "bounds_geometry": "POLYGON((-180 -54,-179 -54,-178 -54,-177 -54,-176 -54,-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-170 -55.2,-170 -56.4,-170 -57.6,-170 -58.8,-170 -60,-170 -61.2,-170 -62.4,-170 -63.6,-170 -64.8,-170 -66,-171 -66,-172 -66,-173 -66,-174 -66,-175 -66,-176 -66,-177 -66,-178 -66,-179 -66,180 -66,145 -66,110 -66,75 -66,40 -66,5 -66,-30 -66,-65 -66,-100 -66,-135 -66,-170 -66,-170 -64.8,-170 -63.6,-170 -62.4,-170 -61.2,-170 -60,-170 -58.8,-170 -57.6,-170 -56.4,-170 -55.2,-170 -54,-135 -54,-100 -54,-65 -54,-30 -54,5 -54,40 -54,75 -54,110 -54,145 -54,-180 -54))", "dataset_titles": "Data sets for RVIB Nathaniel B Palmer February-April, 1998, cruise; U.S. JGOFS Southern Ocean (AESOPS) Data", "datasets": [{"dataset_uid": "002116", "doi": "", "keywords": null, "people": null, "repository": "JGOF", "science_program": null, "title": "Data sets for RVIB Nathaniel B Palmer February-April, 1998, cruise", "url": "http://usjgofs.whoi.edu/jg/dir/jgofs/southern/nbp98_2/"}, {"dataset_uid": "000249", "doi": "", "keywords": null, "people": null, "repository": "JGOF", "science_program": null, "title": "U.S. JGOFS Southern Ocean (AESOPS) Data", "url": "http://usjgofs.whoi.edu/southernobjects.html"}, {"dataset_uid": "002115", "doi": "", "keywords": null, "people": null, "repository": "JGOF", "science_program": null, "title": "U.S. JGOFS Southern Ocean (AESOPS) Data", "url": "http://usjgofs.whoi.edu/southernobjects.html"}], "date_created": "Thu, 01 Jan 1970 00:00:00 GMT", "description": "9530379 Anderson This research project is part of the US Joint Global Ocean Flux Study (JGOFS) Southern Ocean Program aimed at (1) a better understanding of the fluxes of carbon, both organic and inorganic, in the Southern Ocean, (2) identifying the physical, ecological and biogeochemical factors and processes which regulate the magnitude and variability of these fluxes, and (3) placing these fluxes into the context of the contemporary global carbon cycle. This work is one of forty-four projects that are collaborating in the Southern Ocean Experiment, a three- year effort south of the Antarctic Polar Frontal Zone to track the flow of carbon through its organic and inorganic pathways from the air-ocean interface through the entire water column into the bottom sediment. The experiment will make use of the RVIB Nathaniel B. Palmer and the R/V Thompson. This component is a study of how naturally radioactive material in the ocean sediment may be used to reconstruct the flux of biogenic material through the water column to the sediment, and by inference, the productivity of the surface layers. There is evidence that the current surface conditions of high nutrient levels, but low chlorophyll levels do not extend back into colder climatic epochs, and that an examination of radionuclides may allow the reconstruction of rates of paleoproductivity. Two aspects of the biogeochemical cycling and physical transport of radionuclide tracers in the modern ocean will be investigated. In the first part, the concentration of a series of natural radionuclide tracers (thorium-230, protactinium-231, and Beryllium-10) in the Southern Ocean will be measured for their scavenging behavior both in the water column and in particulate material collected by sediment traps. The goal is to test the proposed use of radionuclide ratios as proxy variables for the export flux. In the second part, the concentration values will be introduced into an ocean general circulat ion model to evaluate the transport of radionuclides by the ocean circulation on scales that are larger than the spatial gradients in particle flux. These combined efforts will better define our ability to use radionuclide ratios to evaluate past changes in ocean productivity, and improve our understanding of the response of ocean productivity to climate variability. ***", "east": -170.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": false, "keywords": "Beryllium; Calcium Carbonate; Thorium; Radionulides; Radiocarbon; Organic Carbon; Pa; Protactinium; Uranium; Opal; Th; Be; NBP9802; U; Not provided", "locations": null, "north": -54.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Anderson, Robert", "platforms": "Not provided", "repo": "JGOF", "repositories": "JGOF", "science_programs": null, "south": -66.0, "title": "Proxies of Past Changes in Southern Ocean Productivity: Modeling and Experimental Development", "uid": "p0000713", "west": -170.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Management and Scientific Service in Support of the U.S. JGOFS Southern Ocean Process Study: Hydrography, Coring and Site Survey
|
9530382 9896290 9530398 |
2010-05-04 | Anderson, Robert; Smith, Walker; Honjo, Susumu |
|
95-30398 Anderson This research project is part of the US Joint Global Ocean Flux Study (JGOFS) Southern Ocean Program aimed at (1) a better understanding of the fluxes of carbon, both organic and inorganic, in the Southern Ocean, (2) identifying the physical, ecological and biogeochemical factors and processes which regulate the magnitude and variability of these fluxes, and (3) placing these fluxes into the context of the contemporary global carbon cycle. The overall objectives of JGOFS are to determine and understand processes controlling the time-varying fluxes of carbon and associated biogenic elements, and to predict the response of marine biogeochemical processes to climate change. The Southern Ocean is critical in the global carbon cycle, as judged by its size and the physical processes which occur in it (e.g., deep and intermediate water formation), but its present quantitative role is uncertain. JGOFS objectives for the Southern Ocean study are as follows: 1) to constrain the fluxes of carbon (organic and inorganic) and to place these fluxes in the context of the contemporary carbon cycle; 2) to identify the factors and processes which regulate the magnitude and variability of primary productivity and the fate of biogenic matter; 3) to determine the response of the Southern Ocean to natural climate perturbations; and 4) to predict the response of the Southern Ocean to climate change. In order to successfully address these objectives, a large field program has been designed to provide various investigators the opportunity to test specific hypotheses which relate to these broadly-defined objectives. We expect the field test to begin in September 1996, and last through March 1998 using two ships, the R.V. Palmer, and the R.V. Thompson. As most of the investigators will use hydrographic and nutrient data from these cruises, this proposal requests funds for the support of the analysis of nutrient concentrations during these thirteen crui ses. A team of oceanographic experts from a variety of institutions has been assembled to complete these analyses; furthermore, the data will be scrutinized for errors and provided in a timely fashion to all PI's in the project, as well as to the relevant oceanographic data storage facilities. The hydrography and coring groups have been put together using the successful model for the Arabian Sea JGOFS study, and in conjunction with the nutrient data (supported under a separate proposal), will form a large portion of the Southern Ocean JGOFS database which both field investigators and modelers will use to clarify the role of the Southern Ocean in the global carbon cycle. | POLYGON((-179.9999 -43.5646,-143.99993 -43.5646,-107.99996 -43.5646,-71.99999 -43.5646,-36.00002 -43.5646,-0.000050000000016 -43.5646,35.99992 -43.5646,71.99989 -43.5646,107.99986 -43.5646,143.99983 -43.5646,179.9998 -43.5646,179.9998 -47.013473,179.9998 -50.462346,179.9998 -53.911219,179.9998 -57.360092,179.9998 -60.808965,179.9998 -64.257838,179.9998 -67.706711,179.9998 -71.155584,179.9998 -74.604457,179.9998 -78.05333,143.99983 -78.05333,107.99986 -78.05333,71.99989 -78.05333,35.99992 -78.05333,-0.000049999999987 -78.05333,-36.00002 -78.05333,-71.99999 -78.05333,-107.99996 -78.05333,-143.99993 -78.05333,-179.9999 -78.05333,-179.9999 -74.604457,-179.9999 -71.155584,-179.9999 -67.706711,-179.9999 -64.257838,-179.9999 -60.808965,-179.9999 -57.360092,-179.9999 -53.911219,-179.9999 -50.462346,-179.9999 -47.013473,-179.9999 -43.5646)) | POINT(0 -89.999) | false | false | |||||||||
Proxies of Past Changes in Southern Ocean Productivity: Modeling and Experimental Development
|
9530379 |
1970-01-01 | Anderson, Robert |
|
9530379 Anderson This research project is part of the US Joint Global Ocean Flux Study (JGOFS) Southern Ocean Program aimed at (1) a better understanding of the fluxes of carbon, both organic and inorganic, in the Southern Ocean, (2) identifying the physical, ecological and biogeochemical factors and processes which regulate the magnitude and variability of these fluxes, and (3) placing these fluxes into the context of the contemporary global carbon cycle. This work is one of forty-four projects that are collaborating in the Southern Ocean Experiment, a three- year effort south of the Antarctic Polar Frontal Zone to track the flow of carbon through its organic and inorganic pathways from the air-ocean interface through the entire water column into the bottom sediment. The experiment will make use of the RVIB Nathaniel B. Palmer and the R/V Thompson. This component is a study of how naturally radioactive material in the ocean sediment may be used to reconstruct the flux of biogenic material through the water column to the sediment, and by inference, the productivity of the surface layers. There is evidence that the current surface conditions of high nutrient levels, but low chlorophyll levels do not extend back into colder climatic epochs, and that an examination of radionuclides may allow the reconstruction of rates of paleoproductivity. Two aspects of the biogeochemical cycling and physical transport of radionuclide tracers in the modern ocean will be investigated. In the first part, the concentration of a series of natural radionuclide tracers (thorium-230, protactinium-231, and Beryllium-10) in the Southern Ocean will be measured for their scavenging behavior both in the water column and in particulate material collected by sediment traps. The goal is to test the proposed use of radionuclide ratios as proxy variables for the export flux. In the second part, the concentration values will be introduced into an ocean general circulat ion model to evaluate the transport of radionuclides by the ocean circulation on scales that are larger than the spatial gradients in particle flux. These combined efforts will better define our ability to use radionuclide ratios to evaluate past changes in ocean productivity, and improve our understanding of the response of ocean productivity to climate variability. *** | POLYGON((-180 -54,-179 -54,-178 -54,-177 -54,-176 -54,-175 -54,-174 -54,-173 -54,-172 -54,-171 -54,-170 -54,-170 -55.2,-170 -56.4,-170 -57.6,-170 -58.8,-170 -60,-170 -61.2,-170 -62.4,-170 -63.6,-170 -64.8,-170 -66,-171 -66,-172 -66,-173 -66,-174 -66,-175 -66,-176 -66,-177 -66,-178 -66,-179 -66,180 -66,145 -66,110 -66,75 -66,40 -66,5 -66,-30 -66,-65 -66,-100 -66,-135 -66,-170 -66,-170 -64.8,-170 -63.6,-170 -62.4,-170 -61.2,-170 -60,-170 -58.8,-170 -57.6,-170 -56.4,-170 -55.2,-170 -54,-135 -54,-100 -54,-65 -54,-30 -54,5 -54,40 -54,75 -54,110 -54,145 -54,-180 -54)) | POINT(0 -89.999) | false | false |