{"dp_type": "Project", "free_text": "Macayeal Ice Stream"}
[{"awards": "0934534 Sergienko, Olga", "bounds_geometry": "POLYGON((-106 -70,-105.4 -70,-104.8 -70,-104.2 -70,-103.6 -70,-103 -70,-102.4 -70,-101.8 -70,-101.2 -70,-100.6 -70,-100 -70,-100 -70.6,-100 -71.2,-100 -71.8,-100 -72.4,-100 -73,-100 -73.6,-100 -74.2,-100 -74.8,-100 -75.4,-100 -76,-100.6 -76,-101.2 -76,-101.8 -76,-102.4 -76,-103 -76,-103.6 -76,-104.2 -76,-104.8 -76,-105.4 -76,-106 -76,-106 -75.4,-106 -74.8,-106 -74.2,-106 -73.6,-106 -73,-106 -72.4,-106 -71.8,-106 -71.2,-106 -70.6,-106 -70))", "dataset_titles": "Inverted Basal Shear Stress of Antarctic and Greenland Ice Streams and Glaciers", "datasets": [{"dataset_uid": "609626", "doi": "10.7265/N5XS5SBW", "keywords": "Antarctica; Arctic; Bindschadler Ice Stream; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Greenland; Lambert Ice Stream; Macayeal Ice Stream; Pine Island Glacier; Thwaites Glacier", "people": "Sergienko, Olga", "repository": "USAP-DC", "science_program": null, "title": "Inverted Basal Shear Stress of Antarctic and Greenland Ice Streams and Glaciers", "url": "https://www.usap-dc.org/view/dataset/609626"}], "date_created": "Thu, 06 Feb 2014 00:00:00 GMT", "description": "Funds are provided to enable applications of powerful mathematical concepts and computational tools for rigorous sensitivity analysis, pseudo-spectra and generalized stability theory, and advanced state estimation in the context of large-scale ice sheet modeling. At the center of the proposal is the generation and application of adjoint model (ADM) and tangent linear model (TLM) components of the new Community Ice Sheet Model (CISM). The goal will be achieved through rigorous use of automatic differentiation (AD) to ensure synchronicity between the ongoing model development and improvement in terms of better representation of higher-order stress terms (which account for crucial fast flow regimes) of the nonlinear forward model (NLM) code and the derivative codes. The adjoint enables extremely efficient computation of gradients of scalar-valued functions in very high-dimensional control spaces. A hierarchy of applications is envisioned: (1) sensitivity calculations in support of the Intergovernmental Panel on Climate Change (IPCC) in order to determine to which control variables the polar ice sheet volumes are most sensitive; based on adjoint sensitivity maps, to establish quantitative estimates of ice sheet volume changes for relevant forcing scenarios; and to assess how sensitivities change when including higher-order stress terms; (2) coupling of the ADM and TLM to calculate pseudo-spectra or singular vectors (SV?s) of relevant ice sheet norms; SV?s provide perturbation patterns which lead to non-normal growth, optimally amplifying norm kernels over finite times; among the many applications of SV?s are optimal initialization of ensembles to assess uncertainties; SV?s are calculated through matrix-free iterative solution of a generalized eigenvalue problem via Lanczos or Arnoldi implicit restart algorithms; (3) a long-term goal is the development of an ice sheet state estimation system based on the adjoint or Lagrange Multiplier Method (LMM) in order to synthesize, in a formal manner, the increasing number and heterogeneous types of observations with a three-dimensional, state-of-the-art ice sheet model; an important requirement is that the adjoint incorporate new schemes that are being developed for CISM to capture crucial, but as yet unrepresented physical processes.", "east": -100.0, "geometry": "POINT(-103 -73)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e VISUAL OBSERVATIONS", "is_usap_dc": true, "keywords": "Not provided; Inverse Modeling; GROUND-BASED OBSERVATIONS; Basal Shear Stress", "locations": null, "north": -70.0, "nsf_funding_programs": "Arctic Natural Sciences", "paleo_time": null, "persons": "Sergienko, Olga", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "COLLABORATIVE RESEARCH: Enabling ice sheet sensitivity and stability analysis with a large-scale higher-order ice sheet model\u0027s adjoint to support sea level change assessment", "uid": "p0000048", "west": -106.0}, {"awards": "0440636 Fahnestock, Mark; 0440670 Hulbe, Christina", "bounds_geometry": "POLYGON((-180 -70,-175 -70,-170 -70,-165 -70,-160 -70,-155 -70,-150 -70,-145 -70,-140 -70,-135 -70,-130 -70,-130 -71.6,-130 -73.2,-130 -74.8,-130 -76.4,-130 -78,-130 -79.6,-130 -81.2,-130 -82.8,-130 -84.4,-130 -86,-135 -86,-140 -86,-145 -86,-150 -86,-155 -86,-160 -86,-165 -86,-170 -86,-175 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -84.4,180 -82.8,180 -81.2,180 -79.6,180 -78,180 -76.4,180 -74.8,180 -73.2,180 -71.6,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,-180 -70))", "dataset_titles": "MOA-derived Structural Feature Map of the Ronne Ice Shelf; MOA-derived Structural Feature Map of the Ross Ice Shelf; Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "datasets": [{"dataset_uid": "600024", "doi": "", "keywords": null, "people": "Fahnestock, Mark", "repository": "USAP-DC", "science_program": null, "title": "Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "url": "https://www.usap-dc.org/view/dataset/600024"}, {"dataset_uid": "601432", "doi": "10.15784/601432", "keywords": "Antarctica", "people": "Ledoux, Christine; Hulbe, Christina; Forbes, Martin", "repository": "USAP-DC", "science_program": null, "title": "MOA-derived Structural Feature Map of the Ross Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601432"}, {"dataset_uid": "609497", "doi": "10.7265/N5PR7SXR", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; MOA; MODIS; Ronne Ice Shelf", "people": "Hulbe, Christina; Ledoux, Christine", "repository": "USAP-DC", "science_program": null, "title": "MOA-derived Structural Feature Map of the Ronne Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/609497"}], "date_created": "Thu, 25 Sep 2008 00:00:00 GMT", "description": "This award supports a three year project to develop the tools required to interpret complex patterns of flow features on the Ross Ice Shelf, which record the discharge history the ice streams flowing east off of the West Antarctic Ice Sheet. This work builds on previous research that used flow features visible in satellite image mosaics and numerical models of ice shelf flow to detect changes in grounding zone dynamics and redirection of ice stream outlets over hundreds of years. Recently observed changes on Whillans Ice Stream fit within this framework. The pattern of redirection is driven by the influence of rapid downstream thinning on the basal thermal gradient in the ice and associated \"sticky spot\" (ice rise) formation. In pursuing this work, the investigators recognized other records of discharge variation on the shelf that can be used to build a more complete history and understanding of ice-stream discharge variability. The intellectual merit of the proposed work lies in the fact that these records, including fracture patterns and spatial variation in ice thickness, when understood in the proper context, will yield quantitative information about the timing and dynamics of ice stream slowdowns, grounding line retreat, and the relative history of discharge between the ice streams. New tools will help further constrain this history. The laser altimeter on NASA\u0027s IceSAT has improved our knowledge of the surface elevation of Antarctic ice. IceSAT surface elevations provide a high-resolution map of ice-shelf thickness that, along with provenance maps from ice-shelf image mosaics, will be used to estimate the volumes of ice involved in past ice-stream discharge events (slowdowns, redirections, and so on). This project will develop new numerical models for fracture propagation; these will allow past variations in ice-shelf stress state to be investigated. Together, the dynamic and volume-flux histories will provide a powerful set of observations for understanding past variations in ice stream discharge and the underlying physical processes. The broader impacts of this project center on how it contributes to the ability to estimate West Antarctic contributions to global sea level rise and to answer outstanding questions about the causes of millennial and longer-scale evolution of ice streams. This work will provide a history of the most complex record of ice discharge known. In addition to the incorporation of this research into graduate student advising and normal teaching duties, the investigators are involved in other avenues of civic engagement and education. Outreach to high school students and the community at large is promoted on an annual basis by the investigators at both institutions. New outreach projects at Portland State University are developed with the assistance of researchers with expertise in student learning and achievement in science and mathematics. The collaborative research team includes two glaciologists with experience in the pairing of high resolution satellite imagery and a variety of ice-flow models and a geologist whose focus is the mechanics of rock deformation.", "east": -130.0, "geometry": "POINT(-155 -78)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e MODIS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e MODIS", "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Fracture Patterns; Ross Ice Shelf; West Antarctic Ice Sheet; Not provided; Antarctica; TERRA; Ice Sheet; Ice Rise; LABORATORY; Ice-Stream Discharge; West Antarctica; Fracture Propagation; SATELLITES; Ice Stream Motion; Grounding Line; Ice Movement; Ice Stream; Whillans Ice Stream; Ice Stream Outlets; Basal Temperature Gradient; Numerical Model; Ice Thickness; Flow Features; Kamb Ice Stream; Antarctic Ice Sheet; Satellite Image Mosaics; Icesat; Grounding Line Migration; ICESAT", "locations": "Kamb Ice Stream; Whillans Ice Stream; Antarctica; Ross Ice Shelf; West Antarctic Ice Sheet; Antarctic Ice Sheet; West Antarctica", "north": -70.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Hulbe, Christina; Ledoux, Christine; Fahnestock, Mark", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e SATELLITES; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e TERRA", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Collaborative Research: Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams", "uid": "p0000096", "west": 180.0}, {"awards": "9725882 Raymond, Charles", "bounds_geometry": "POLYGON((-141.6722 -80.1678,-141.34195 -80.1678,-141.0117 -80.1678,-140.68145 -80.1678,-140.3512 -80.1678,-140.02095 -80.1678,-139.6907 -80.1678,-139.36045 -80.1678,-139.0302 -80.1678,-138.69995 -80.1678,-138.3697 -80.1678,-138.3697 -80.4863,-138.3697 -80.8048,-138.3697 -81.1233,-138.3697 -81.4418,-138.3697 -81.7603,-138.3697 -82.0788,-138.3697 -82.3973,-138.3697 -82.7158,-138.3697 -83.0343,-138.3697 -83.3528,-138.69995 -83.3528,-139.0302 -83.3528,-139.36045 -83.3528,-139.6907 -83.3528,-140.02095 -83.3528,-140.3512 -83.3528,-140.68145 -83.3528,-141.0117 -83.3528,-141.34195 -83.3528,-141.6722 -83.3528,-141.6722 -83.0343,-141.6722 -82.7158,-141.6722 -82.3973,-141.6722 -82.0788,-141.6722 -81.7603,-141.6722 -81.4418,-141.6722 -81.1233,-141.6722 -80.8048,-141.6722 -80.4863,-141.6722 -80.1678))", "dataset_titles": "Radar Investigations of Antarctic Ice Stream Margins, Siple Dome, 1998", "datasets": [{"dataset_uid": "609303", "doi": "10.7265/N52B8VZP", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Siple Dome", "people": "Nereson, Nadine A.; Raymond, Charles", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Radar Investigations of Antarctic Ice Stream Margins, Siple Dome, 1998", "url": "https://www.usap-dc.org/view/dataset/609303"}], "date_created": "Fri, 06 Jul 2007 00:00:00 GMT", "description": "9725882 Raymond This award is for support for a program of surface-based radio echo sounding to examine the geometry of the internal layering and the presence or absence of thawed zones outside the margins of active Ice Streams B and E and across the flow band feeding Ice Stream D. Melting in the marginal shear zone and/or on the bed outside an ice stream relates to the amount of support of the ice stream from the sides compared to the bed and the conditions that limit expansion of its width. Radar observations will be extended over the crest of adjacent inter-ice-stream ridges (B/C and D/E) and areas next to the flow band in the onset of D. The purpose is to examine internal layering indicative of the histories of these areas adjacent to ice streams and to determine whether ice streams have expanded into these presently stable areas in the past. These goals concerning the physical controls and history of ice stream width relate to how the discharge of ice streams has changed in the past and could change in the future to affect sea level.", "east": -138.3697, "geometry": "POINT(-140.02095 -81.7603)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS", "is_usap_dc": true, "keywords": "Ice Stream; Antarctica; Bed Geometry; GROUND-BASED OBSERVATIONS; Internal Layering; Internal Layer Geometry; Siple Dome; Shabtaie Ridge; Not provided; Engelhardt Ridge; Ice Stream Margins; Radar; Whillans Ice Stream; GPS; Bed Reflectivity; Macayeal Ice Stream; Surface Geometry", "locations": "Antarctica; Engelhardt Ridge; Macayeal Ice Stream; Shabtaie Ridge; Siple Dome; Whillans Ice Stream", "north": -80.1678, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raymond, Charles; Nereson, Nadine A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -83.3528, "title": "Internal Stratigraphy and Basal Conditions at the Margins ofActive Ice Streams of the Siple Coast, Antarctica", "uid": "p0000626", "west": -141.6722}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
COLLABORATIVE RESEARCH: Enabling ice sheet sensitivity and stability analysis with a large-scale higher-order ice sheet model's adjoint to support sea level change assessment
|
0934534 |
2014-02-06 | Sergienko, Olga |
|
Funds are provided to enable applications of powerful mathematical concepts and computational tools for rigorous sensitivity analysis, pseudo-spectra and generalized stability theory, and advanced state estimation in the context of large-scale ice sheet modeling. At the center of the proposal is the generation and application of adjoint model (ADM) and tangent linear model (TLM) components of the new Community Ice Sheet Model (CISM). The goal will be achieved through rigorous use of automatic differentiation (AD) to ensure synchronicity between the ongoing model development and improvement in terms of better representation of higher-order stress terms (which account for crucial fast flow regimes) of the nonlinear forward model (NLM) code and the derivative codes. The adjoint enables extremely efficient computation of gradients of scalar-valued functions in very high-dimensional control spaces. A hierarchy of applications is envisioned: (1) sensitivity calculations in support of the Intergovernmental Panel on Climate Change (IPCC) in order to determine to which control variables the polar ice sheet volumes are most sensitive; based on adjoint sensitivity maps, to establish quantitative estimates of ice sheet volume changes for relevant forcing scenarios; and to assess how sensitivities change when including higher-order stress terms; (2) coupling of the ADM and TLM to calculate pseudo-spectra or singular vectors (SV?s) of relevant ice sheet norms; SV?s provide perturbation patterns which lead to non-normal growth, optimally amplifying norm kernels over finite times; among the many applications of SV?s are optimal initialization of ensembles to assess uncertainties; SV?s are calculated through matrix-free iterative solution of a generalized eigenvalue problem via Lanczos or Arnoldi implicit restart algorithms; (3) a long-term goal is the development of an ice sheet state estimation system based on the adjoint or Lagrange Multiplier Method (LMM) in order to synthesize, in a formal manner, the increasing number and heterogeneous types of observations with a three-dimensional, state-of-the-art ice sheet model; an important requirement is that the adjoint incorporate new schemes that are being developed for CISM to capture crucial, but as yet unrepresented physical processes. | POLYGON((-106 -70,-105.4 -70,-104.8 -70,-104.2 -70,-103.6 -70,-103 -70,-102.4 -70,-101.8 -70,-101.2 -70,-100.6 -70,-100 -70,-100 -70.6,-100 -71.2,-100 -71.8,-100 -72.4,-100 -73,-100 -73.6,-100 -74.2,-100 -74.8,-100 -75.4,-100 -76,-100.6 -76,-101.2 -76,-101.8 -76,-102.4 -76,-103 -76,-103.6 -76,-104.2 -76,-104.8 -76,-105.4 -76,-106 -76,-106 -75.4,-106 -74.8,-106 -74.2,-106 -73.6,-106 -73,-106 -72.4,-106 -71.8,-106 -71.2,-106 -70.6,-106 -70)) | POINT(-103 -73) | false | false | |||
Collaborative Research: Using Fracture Patterns and Ice Thickness to Study the History and Dynamics of Grounding Line Migration and Shutdown of Kamb and Whillans Ice Streams
|
0440636 0440670 |
2008-09-25 | Hulbe, Christina; Ledoux, Christine; Fahnestock, Mark | This award supports a three year project to develop the tools required to interpret complex patterns of flow features on the Ross Ice Shelf, which record the discharge history the ice streams flowing east off of the West Antarctic Ice Sheet. This work builds on previous research that used flow features visible in satellite image mosaics and numerical models of ice shelf flow to detect changes in grounding zone dynamics and redirection of ice stream outlets over hundreds of years. Recently observed changes on Whillans Ice Stream fit within this framework. The pattern of redirection is driven by the influence of rapid downstream thinning on the basal thermal gradient in the ice and associated "sticky spot" (ice rise) formation. In pursuing this work, the investigators recognized other records of discharge variation on the shelf that can be used to build a more complete history and understanding of ice-stream discharge variability. The intellectual merit of the proposed work lies in the fact that these records, including fracture patterns and spatial variation in ice thickness, when understood in the proper context, will yield quantitative information about the timing and dynamics of ice stream slowdowns, grounding line retreat, and the relative history of discharge between the ice streams. New tools will help further constrain this history. The laser altimeter on NASA's IceSAT has improved our knowledge of the surface elevation of Antarctic ice. IceSAT surface elevations provide a high-resolution map of ice-shelf thickness that, along with provenance maps from ice-shelf image mosaics, will be used to estimate the volumes of ice involved in past ice-stream discharge events (slowdowns, redirections, and so on). This project will develop new numerical models for fracture propagation; these will allow past variations in ice-shelf stress state to be investigated. Together, the dynamic and volume-flux histories will provide a powerful set of observations for understanding past variations in ice stream discharge and the underlying physical processes. The broader impacts of this project center on how it contributes to the ability to estimate West Antarctic contributions to global sea level rise and to answer outstanding questions about the causes of millennial and longer-scale evolution of ice streams. This work will provide a history of the most complex record of ice discharge known. In addition to the incorporation of this research into graduate student advising and normal teaching duties, the investigators are involved in other avenues of civic engagement and education. Outreach to high school students and the community at large is promoted on an annual basis by the investigators at both institutions. New outreach projects at Portland State University are developed with the assistance of researchers with expertise in student learning and achievement in science and mathematics. The collaborative research team includes two glaciologists with experience in the pairing of high resolution satellite imagery and a variety of ice-flow models and a geologist whose focus is the mechanics of rock deformation. | POLYGON((-180 -70,-175 -70,-170 -70,-165 -70,-160 -70,-155 -70,-150 -70,-145 -70,-140 -70,-135 -70,-130 -70,-130 -71.6,-130 -73.2,-130 -74.8,-130 -76.4,-130 -78,-130 -79.6,-130 -81.2,-130 -82.8,-130 -84.4,-130 -86,-135 -86,-140 -86,-145 -86,-150 -86,-155 -86,-160 -86,-165 -86,-170 -86,-175 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -86,180 -84.4,180 -82.8,180 -81.2,180 -79.6,180 -78,180 -76.4,180 -74.8,180 -73.2,180 -71.6,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,180 -70,-180 -70)) | POINT(-155 -78) | false | false | ||||
Internal Stratigraphy and Basal Conditions at the Margins ofActive Ice Streams of the Siple Coast, Antarctica
|
9725882 |
2007-07-06 | Raymond, Charles; Nereson, Nadine A. |
|
9725882 Raymond This award is for support for a program of surface-based radio echo sounding to examine the geometry of the internal layering and the presence or absence of thawed zones outside the margins of active Ice Streams B and E and across the flow band feeding Ice Stream D. Melting in the marginal shear zone and/or on the bed outside an ice stream relates to the amount of support of the ice stream from the sides compared to the bed and the conditions that limit expansion of its width. Radar observations will be extended over the crest of adjacent inter-ice-stream ridges (B/C and D/E) and areas next to the flow band in the onset of D. The purpose is to examine internal layering indicative of the histories of these areas adjacent to ice streams and to determine whether ice streams have expanded into these presently stable areas in the past. These goals concerning the physical controls and history of ice stream width relate to how the discharge of ice streams has changed in the past and could change in the future to affect sea level. | POLYGON((-141.6722 -80.1678,-141.34195 -80.1678,-141.0117 -80.1678,-140.68145 -80.1678,-140.3512 -80.1678,-140.02095 -80.1678,-139.6907 -80.1678,-139.36045 -80.1678,-139.0302 -80.1678,-138.69995 -80.1678,-138.3697 -80.1678,-138.3697 -80.4863,-138.3697 -80.8048,-138.3697 -81.1233,-138.3697 -81.4418,-138.3697 -81.7603,-138.3697 -82.0788,-138.3697 -82.3973,-138.3697 -82.7158,-138.3697 -83.0343,-138.3697 -83.3528,-138.69995 -83.3528,-139.0302 -83.3528,-139.36045 -83.3528,-139.6907 -83.3528,-140.02095 -83.3528,-140.3512 -83.3528,-140.68145 -83.3528,-141.0117 -83.3528,-141.34195 -83.3528,-141.6722 -83.3528,-141.6722 -83.0343,-141.6722 -82.7158,-141.6722 -82.3973,-141.6722 -82.0788,-141.6722 -81.7603,-141.6722 -81.4418,-141.6722 -81.1233,-141.6722 -80.8048,-141.6722 -80.4863,-141.6722 -80.1678)) | POINT(-140.02095 -81.7603) | false | false |