{"dp_type": "Project", "free_text": "Law Dome"}
[{"awards": "1643664 Severinghaus, Jeffrey; 1643669 Petrenko, Vasilii; 1643716 Buizert, Christo", "bounds_geometry": "POLYGON((112 -66,112.2 -66,112.4 -66,112.6 -66,112.8 -66,113 -66,113.2 -66,113.4 -66,113.6 -66,113.8 -66,114 -66,114 -66.1,114 -66.2,114 -66.3,114 -66.4,114 -66.5,114 -66.6,114 -66.7,114 -66.8,114 -66.9,114 -67,113.8 -67,113.6 -67,113.4 -67,113.2 -67,113 -67,112.8 -67,112.6 -67,112.4 -67,112.2 -67,112 -67,112 -66.9,112 -66.8,112 -66.7,112 -66.6,112 -66.5,112 -66.4,112 -66.3,112 -66.2,112 -66.1,112 -66))", "dataset_titles": "Concentration and isotopic composition of atmospheric N2O over the last century; Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2; Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy", "datasets": [{"dataset_uid": "601693", "doi": "10.15784/601693", "keywords": "Antarctic; Antarctica; Anthropogenic Emission; Atmosphere; Cryosphere; Cryosphere; Greenhouse Gas; Greenland; Ice Core Data; Nitrification and Denitrification Processes; Nitrous Oxide; Site-specific 15N isotopomer; Styx Glacier", "people": "Ghosh, Sambit; Toyoda, Sakae ; Buizert, Christo ; Langenfelds, Ray L ; Yoshida, Naohiro ; Joong Kim, Seong; Ahn, Jinho ; Etheridge, David", "repository": "USAP-DC", "science_program": null, "title": "Concentration and isotopic composition of atmospheric N2O over the last century", "url": "https://www.usap-dc.org/view/dataset/601693"}, {"dataset_uid": "601598", "doi": "10.15784/601598", "keywords": "Antarctica; Cryosphere; Firn; firn densification; Gravitational Settling; Inert Gases; Law Dome", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Law Dome DE08-OH firn air 15N, O2/N2, Ar/N2, 18O of O2", "url": "https://www.usap-dc.org/view/dataset/601598"}, {"dataset_uid": "601597", "doi": "10.15784/601597", "keywords": "Antarctica; Cryosphere; ice cores; Law Dome; noble gases", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Law Dome DE08-OH site noble gases in ice: testing the 86Krexcess proxy", "url": "https://www.usap-dc.org/view/dataset/601597"}], "date_created": "Fri, 17 Jun 2022 00:00:00 GMT", "description": "Hydroxyl radicals are responsible for removal of most atmospheric trace gases, including pollutants and important greenhouse gases. They have been called the \"detergent of the atmosphere\". Changes in hydroxyl radical concentration in response to large changes in reactive trace gas emissions, which may happen in the future, are uncertain. This project aims to provide the first estimates of the variability of atmospheric hydroxyl radicals since about 1880 AD when anthropogenic emissions of reactive trace gases were minimal. This will improve understanding of their stability in response to large changes in emissions. The project will also investigate whether ice cores record past changes in Southern Hemisphere westerly winds. These winds are a key component of the global climate system, and have an important influence on ocean circulation and possibly on atmospheric carbon dioxide concentrations. The project team will include three early career scientists, a postdoctoral researcher, and graduate and undergraduate students, working in collaboration with senior scientists and Australian collaborators. \u003cbr/\u003e \u003cbr/\u003eFirn air and shallow ice to a depth of about 233 m will be sampled at the Law Dome high-accumulation coastal site in East Antarctica. Trapped air will be extracted from the ice cores on site immediately after drilling. Carbon-14 of carbon monoxide (14CO) will be analyzed in firn and ice-core air samples. Corrections will be made for the in situ cosmogenic 14CO component in the ice, allowing for the atmospheric 14CO history to be reconstructed. This 14CO history will be interpreted with the aid of a chemistry-transport model to place the first observational constraints on the variability of Southern Hemisphere hydroxyl radical concentration after about 1880 AD. An additional component of the project will analyze Krypton-86 in the firn-air and ice-core samples. These measurements will explore whether ice-core Krypton-86 acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere westerly winds.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 114.0, "geometry": "POINT(113 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; TRACE GASES/TRACE SPECIES; Law Dome; USAP-DC; LABORATORY; ICE CORE AIR BUBBLES; AMD/US; USA/NSF", "locations": "Law Dome", "north": -66.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Murray, Lee T; Buizert, Christo; Petrenko, Vasilii; Murray, Lee T", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability", "uid": "p0010341", "west": 112.0}, {"awards": "1543267 Brook, Edward; 1543229 Severinghaus, Jeffrey", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Multi-site ice core Krypton stable isotope ratios; Noble Gas Data from recent ice in Antarctica for 86Kr problem", "datasets": [{"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Cryosphere; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICECORE; WAIS divide; WAIS Divide Ice Core", "people": "Bereiter, Bernhard; Mosley-Thompson, Ellen; Buizert, Christo; Severinghaus, Jeffrey P.; Shackleton, Sarah; Mulvaney, Robert; Pyne, Rebecca L.; Etheridge, David; Bertler, Nancy; Brook, Edward J.; Baggenstos, Daniel", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}, {"dataset_uid": "601195", "doi": "10.15784/601195", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Krypton; Noble Gas; Xenon", "people": "Severinghaus, Jeffrey P.; Shackleton, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Noble Gas Data from recent ice in Antarctica for 86Kr problem", "url": "https://www.usap-dc.org/view/dataset/601195"}, {"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Cryosphere; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICECORE; WAIS divide; WAIS Divide Ice Core", "people": "Etheridge, David; Buizert, Christo; Baggenstos, Daniel; Severinghaus, Jeffrey P.; Pyne, Rebecca L.; Bertler, Nancy; Bereiter, Bernhard; Shackleton, Sarah; Mosley-Thompson, Ellen; Mulvaney, Robert; Brook, Edward J.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}, {"dataset_uid": "601394", "doi": "10.15784/601394", "keywords": "Antarctica; Bruce Plateau; Cryosphere; Glaciers/Ice Sheet; Glaciology; Greenland Ice Cap; Ice Core; Ice Core Chemistry; Ice Core Records; James Ross Island; Krypton; Law Dome; Low Dome Ice Core; Roosevelt Island; Siple Dome; Siple Dome Ice Core; South Pole; SPICECORE; WAIS divide; WAIS Divide Ice Core", "people": "Bereiter, Bernhard; Buizert, Christo; Shackleton, Sarah; Severinghaus, Jeffrey P.; Brook, Edward J.; Baggenstos, Daniel; Etheridge, David; Bertler, Nancy; Pyne, Rebecca L.; Mulvaney, Robert; Mosley-Thompson, Ellen", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Multi-site ice core Krypton stable isotope ratios", "url": "https://www.usap-dc.org/view/dataset/601394"}], "date_created": "Wed, 10 Jul 2019 00:00:00 GMT", "description": "Overview: The funded work investigated whether ice core 86Kr acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere (SH) westerly winds. Pressure variations drive macroscopic air movement in the firn column, which reduces the gravitational isotopic enrichment of slow-diffusing gases (such as Kr). The 86Kr deviation from gravitational equilibrium (denoted D86Kr) thus reflects the magnitude of pressure variations (among other things). Atmospheric reanalysis data suggest that pressure variability over Antarctica is linked to the Southern Annular Mode (SAM) index and the position of the SH westerly winds. Preliminary data from the WAIS Divide ice core show a large excursion in D86Kr during the last deglaciation (20-9 ka before present). In this project the investigators (1) performed high-precision 86Kr analysis on ice core and firn air samples to establish whether D86Kr is linked to pressure variability; (2) Refined the deglacial WAIS Divide record of Kr isotopes; (3) Investigated the role of pressure variability in firn air transport using firn air models with firn microtomography data and Lattice- Boltzmann modeling; and (4) Investigated how barometric pressure variability in Antarctica is linked to the SAM index and the position/strength of the SH westerlies in past and present climates using GCM and reanalysis data. A key finding was that D86Kr in recent ice samples (e.g. last 50 years) from a broad spatial array of sites in Antarctica and Greenland showed a significant correlation with directly measured barometric pressure variability at the ice core site. This strongly supports the hypothesis that 86Kr can be used as a paleo-proxy for storminess.\r\nIntellectual Merit: The SH westerlies are a key component of the global climate system; they are an important control on the global oceanic overturning circulation and possibly on atmospheric CO2 concentrations. Poleward movement of the SH westerlies during the last deglaciation has been hypothesized, yet evidence from proxy and modeling studies remains inconclusive. The funded work could provide valuable new constraints on deglacial movement of the SH westerlies. This record can be compared to high-resolution CO2 data from the same core, allowing us to test hypotheses that link CO2 to the SH westerlies. Climate proxies are at the heart of paleoclimate research. The funded work has apparently led to the discovery of a completely new proxy, opening up exciting new research possibilities and increasing the scientific value of existing ice cores. Once validated, the 86Kr proxy could be applied to other time periods as well, providing a long-term perspective on the movement of the SH westerlies. The funded work has furthermore provided valuable new insights into firn air transport. \r\n\r\nBroader impact: The Southern Ocean is presently an important sink of atmospheric CO2, thereby reducing the warming associated with anthropogenic CO2 emissions. Stratospheric ozone depletion and greenhouse warming have displaced the SH westerlies poleward, with potential consequences for the future magnitude of this oceanic carbon uptake. The funded work may provide a paleo-perspective on past movement of the SH westerlies and its link to atmospheric CO2, which could guide projections of future oceanic CO2 uptake, with strong societal benefits. The awarded funds supported and trained an early-career postdoctoral scholar at OSU, and fostered (international) collaboration. Data from the study will be available to the scientific community and the broad public through recognized data centers. During this project the PI and senior personnel have continued their commitment to public outreach through media interviews and speaking to schools and the public about their work. The PI provides services to the community by chairing the IPICS (International Partnership in Ice Core Sciences) working group and organizing annual PIRE (Partnerships in International Research and Education) workshops.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AMD/US; USA/NSF; FIRN; ICE CORE RECORDS; USAP-DC; Greenland; Xenon; Noble Gas; Ice Core; Antarctica; AMD; LABORATORY; Krypton; ATMOSPHERIC PRESSURE", "locations": "Greenland; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Severinghaus, Jeffrey P.; Brook, Edward J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative research: Kr-86 as a proxy for barometric pressure variability and movement of the SH westerlies during the last\r\ndeglaciation", "uid": "p0010037", "west": -180.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "Law Dome Ice Cores Chemistry Data", "datasets": [{"dataset_uid": "609245", "doi": "", "repository": "USAP-DC", "science_program": null, "title": "Law Dome Ice Cores Chemistry Data", "url": "http://www.usap-dc.org/view/dataset/609245"}], "date_created": "Thu, 26 Aug 2004 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Chemistry:Ice; Cryosphere; Geochemistry; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Law Dome; Paleoclimate", "locations": "Law Dome; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Barnola, J. M.; Morgan, Vin; Etheridge, David", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability
|
1643664 1643669 1643716 |
2022-06-17 | Petrenko, Vasilii; Murray, Lee T; Buizert, Christo; Petrenko, Vasilii; Murray, Lee T | Hydroxyl radicals are responsible for removal of most atmospheric trace gases, including pollutants and important greenhouse gases. They have been called the "detergent of the atmosphere". Changes in hydroxyl radical concentration in response to large changes in reactive trace gas emissions, which may happen in the future, are uncertain. This project aims to provide the first estimates of the variability of atmospheric hydroxyl radicals since about 1880 AD when anthropogenic emissions of reactive trace gases were minimal. This will improve understanding of their stability in response to large changes in emissions. The project will also investigate whether ice cores record past changes in Southern Hemisphere westerly winds. These winds are a key component of the global climate system, and have an important influence on ocean circulation and possibly on atmospheric carbon dioxide concentrations. The project team will include three early career scientists, a postdoctoral researcher, and graduate and undergraduate students, working in collaboration with senior scientists and Australian collaborators. <br/> <br/>Firn air and shallow ice to a depth of about 233 m will be sampled at the Law Dome high-accumulation coastal site in East Antarctica. Trapped air will be extracted from the ice cores on site immediately after drilling. Carbon-14 of carbon monoxide (14CO) will be analyzed in firn and ice-core air samples. Corrections will be made for the in situ cosmogenic 14CO component in the ice, allowing for the atmospheric 14CO history to be reconstructed. This 14CO history will be interpreted with the aid of a chemistry-transport model to place the first observational constraints on the variability of Southern Hemisphere hydroxyl radical concentration after about 1880 AD. An additional component of the project will analyze Krypton-86 in the firn-air and ice-core samples. These measurements will explore whether ice-core Krypton-86 acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere westerly winds.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((112 -66,112.2 -66,112.4 -66,112.6 -66,112.8 -66,113 -66,113.2 -66,113.4 -66,113.6 -66,113.8 -66,114 -66,114 -66.1,114 -66.2,114 -66.3,114 -66.4,114 -66.5,114 -66.6,114 -66.7,114 -66.8,114 -66.9,114 -67,113.8 -67,113.6 -67,113.4 -67,113.2 -67,113 -67,112.8 -67,112.6 -67,112.4 -67,112.2 -67,112 -67,112 -66.9,112 -66.8,112 -66.7,112 -66.6,112 -66.5,112 -66.4,112 -66.3,112 -66.2,112 -66.1,112 -66)) | POINT(113 -66.5) | false | false | ||||
Collaborative research: Kr-86 as a proxy for barometric pressure variability and movement of the SH westerlies during the last
deglaciation
|
1543267 1543229 |
2019-07-10 | Severinghaus, Jeffrey P.; Brook, Edward J. | Overview: The funded work investigated whether ice core 86Kr acts as a proxy for barometric pressure variability, and whether this proxy can be used in Antarctic ice cores to infer past movement of the Southern Hemisphere (SH) westerly winds. Pressure variations drive macroscopic air movement in the firn column, which reduces the gravitational isotopic enrichment of slow-diffusing gases (such as Kr). The 86Kr deviation from gravitational equilibrium (denoted D86Kr) thus reflects the magnitude of pressure variations (among other things). Atmospheric reanalysis data suggest that pressure variability over Antarctica is linked to the Southern Annular Mode (SAM) index and the position of the SH westerly winds. Preliminary data from the WAIS Divide ice core show a large excursion in D86Kr during the last deglaciation (20-9 ka before present). In this project the investigators (1) performed high-precision 86Kr analysis on ice core and firn air samples to establish whether D86Kr is linked to pressure variability; (2) Refined the deglacial WAIS Divide record of Kr isotopes; (3) Investigated the role of pressure variability in firn air transport using firn air models with firn microtomography data and Lattice- Boltzmann modeling; and (4) Investigated how barometric pressure variability in Antarctica is linked to the SAM index and the position/strength of the SH westerlies in past and present climates using GCM and reanalysis data. A key finding was that D86Kr in recent ice samples (e.g. last 50 years) from a broad spatial array of sites in Antarctica and Greenland showed a significant correlation with directly measured barometric pressure variability at the ice core site. This strongly supports the hypothesis that 86Kr can be used as a paleo-proxy for storminess. Intellectual Merit: The SH westerlies are a key component of the global climate system; they are an important control on the global oceanic overturning circulation and possibly on atmospheric CO2 concentrations. Poleward movement of the SH westerlies during the last deglaciation has been hypothesized, yet evidence from proxy and modeling studies remains inconclusive. The funded work could provide valuable new constraints on deglacial movement of the SH westerlies. This record can be compared to high-resolution CO2 data from the same core, allowing us to test hypotheses that link CO2 to the SH westerlies. Climate proxies are at the heart of paleoclimate research. The funded work has apparently led to the discovery of a completely new proxy, opening up exciting new research possibilities and increasing the scientific value of existing ice cores. Once validated, the 86Kr proxy could be applied to other time periods as well, providing a long-term perspective on the movement of the SH westerlies. The funded work has furthermore provided valuable new insights into firn air transport. Broader impact: The Southern Ocean is presently an important sink of atmospheric CO2, thereby reducing the warming associated with anthropogenic CO2 emissions. Stratospheric ozone depletion and greenhouse warming have displaced the SH westerlies poleward, with potential consequences for the future magnitude of this oceanic carbon uptake. The funded work may provide a paleo-perspective on past movement of the SH westerlies and its link to atmospheric CO2, which could guide projections of future oceanic CO2 uptake, with strong societal benefits. The awarded funds supported and trained an early-career postdoctoral scholar at OSU, and fostered (international) collaboration. Data from the study will be available to the scientific community and the broad public through recognized data centers. During this project the PI and senior personnel have continued their commitment to public outreach through media interviews and speaking to schools and the public about their work. The PI provides services to the community by chairing the IPICS (International Partnership in Ice Core Sciences) working group and organizing annual PIRE (Partnerships in International Research and Education) workshops. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||
None
|
None | 2004-08-26 | Barnola, J. M.; Morgan, Vin; Etheridge, David |
|
None | None | None | false | false |