{"dp_type": "Project", "free_text": "Iowa State University"}
[{"awards": "1643120 Iverson, Neal", "bounds_geometry": null, "dataset_titles": "Ice permeameter experimental parameters and results; Softening of temperate ice by interstitial water; Tertiary creep rates if temperate ice containing greater than 0.7% liquid water", "datasets": [{"dataset_uid": "601460", "doi": "10.15784/601460", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Stream; Lab Experiment; Rheology; Snow/ice; Snow/Ice; Water Content", "people": "Iverson, Neal", "repository": "USAP-DC", "science_program": null, "title": "Softening of temperate ice by interstitial water", "url": "https://www.usap-dc.org/view/dataset/601460"}, {"dataset_uid": "601515", "doi": "10.15784/601515", "keywords": "Antarctica; Glacier Flow; Glacier Hydrology; Glaciological Instruments And Methods; Glaciology; Ice Physics; Ice Stream; Snow/ice; Snow/Ice", "people": "Iverson, Neal; Fowler, Jacob", "repository": "USAP-DC", "science_program": null, "title": "Ice permeameter experimental parameters and results", "url": "https://www.usap-dc.org/view/dataset/601515"}, {"dataset_uid": "601833", "doi": "10.15784/601833", "keywords": "Antarctica; Cryosphere", "people": "Iverson, Neal", "repository": "USAP-DC", "science_program": null, "title": "Tertiary creep rates if temperate ice containing greater than 0.7% liquid water", "url": "https://www.usap-dc.org/view/dataset/601833"}], "date_created": "Wed, 23 Jun 2021 00:00:00 GMT", "description": "Iverson/1643120 This award supports a project to study temperate ice, using both experimental methods and modeling, in order to determine the effect of water on its flow resistance and structure and to study the mobility of water within the ice. A new mathematical model of ice stream flow and temperature is developed in conjunction with these experiments. The model includes water production, storage, and movement in deforming ice and their effects on flow resistance at ice stream margins and on water availability for lubrication of ice stream beds. Results will improve estimates of the evolution of ice stream speed and geometry in a warming climate, and so improve the accuracy of assessments of the contribution of the Antarctic ice sheet to sea level rise over the next century. Ice streams are zones of rapid flow within the Antarctic ice sheet and are primarily responsible for its discharge of ice to the ocean and major effect on sea-level rise. Water plays a central role in the flow of ice streams. It lubricates their bases and softens their margins, where flow speeds abruptly transition from rapid to slow. Within ice stream margins some ice is \"temperate\", meaning that it is at its melting temperature and thus contains intercrystalline water that significantly softens the ice. Two postdoctoral researchers will be supported, trained, and mentored for academic careers, and three undergraduates will be introduced to research in the geosciences. This award is part the NSF/GEO-UK NERC lead agency opportunity (NSF 14-118) and is a collaboration between Iowa State University in the United States and Oxford University in the United Kingdom. The two-phase deformation of temperate ice will be studied, with the objective of determining its effect on the flow of Antarctic ice streams. The project has two components that reinforce each other. First there will be laboratory experiments in which a rotary device at Iowa State University will be used to determine relationships between the water content of temperate ice and its rheology and permeability. The second component will involve the development at Oxford University of a two-phase, fluid-dynamical theory of temperate ice and application of this theory in models of ice-stream dynamics. Results of the experiments will guide the constitutive rules and parameter ranges considered in the theory, and application of elements of the theory will improve interpretations of the experimental results. The theory and resultant models will predict the coupled distributions of temperate ice, water, stress, deformation, and basal slip that control the evolution of ice-stream speed and geometry. The modeling will result in parameterizations that allow ice streaming to be included in continental-scale models of ice sheets in a simplified but physically defensible way.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GLACIER MOTION/ICE SHEET MOTION; Rheology; Antarctica; LABORATORY; Ice Stream; USA/NSF; USAP-DC; Lab Experiment; Water Content", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Iverson, Neal; Zoet, Lucas", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "NSFGEO-NERC: Collaborative Research: Two-Phase Dynamics of Temperate Ice", "uid": "p0010197", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |
---|---|---|---|---|---|---|---|---|---|---|
NSFGEO-NERC: Collaborative Research: Two-Phase Dynamics of Temperate Ice
|
1643120 |
2021-06-23 | Iverson, Neal; Zoet, Lucas | Iverson/1643120 This award supports a project to study temperate ice, using both experimental methods and modeling, in order to determine the effect of water on its flow resistance and structure and to study the mobility of water within the ice. A new mathematical model of ice stream flow and temperature is developed in conjunction with these experiments. The model includes water production, storage, and movement in deforming ice and their effects on flow resistance at ice stream margins and on water availability for lubrication of ice stream beds. Results will improve estimates of the evolution of ice stream speed and geometry in a warming climate, and so improve the accuracy of assessments of the contribution of the Antarctic ice sheet to sea level rise over the next century. Ice streams are zones of rapid flow within the Antarctic ice sheet and are primarily responsible for its discharge of ice to the ocean and major effect on sea-level rise. Water plays a central role in the flow of ice streams. It lubricates their bases and softens their margins, where flow speeds abruptly transition from rapid to slow. Within ice stream margins some ice is "temperate", meaning that it is at its melting temperature and thus contains intercrystalline water that significantly softens the ice. Two postdoctoral researchers will be supported, trained, and mentored for academic careers, and three undergraduates will be introduced to research in the geosciences. This award is part the NSF/GEO-UK NERC lead agency opportunity (NSF 14-118) and is a collaboration between Iowa State University in the United States and Oxford University in the United Kingdom. The two-phase deformation of temperate ice will be studied, with the objective of determining its effect on the flow of Antarctic ice streams. The project has two components that reinforce each other. First there will be laboratory experiments in which a rotary device at Iowa State University will be used to determine relationships between the water content of temperate ice and its rheology and permeability. The second component will involve the development at Oxford University of a two-phase, fluid-dynamical theory of temperate ice and application of this theory in models of ice-stream dynamics. Results of the experiments will guide the constitutive rules and parameter ranges considered in the theory, and application of elements of the theory will improve interpretations of the experimental results. The theory and resultant models will predict the coupled distributions of temperate ice, water, stress, deformation, and basal slip that control the evolution of ice-stream speed and geometry. The modeling will result in parameterizations that allow ice streaming to be included in continental-scale models of ice sheets in a simplified but physically defensible way. | None | None | false | false |