{"dp_type": "Project", "free_text": "Ice Stream Margins"}
[{"awards": "1643120 Iverson, Neal", "bounds_geometry": null, "dataset_titles": "Ice permeameter experimental parameters and results; Softening of temperate ice by interstitial water; Tertiary creep rates if temperate ice containing greater than 0.7% liquid water", "datasets": [{"dataset_uid": "601833", "doi": "10.15784/601833", "keywords": "Antarctica; Cryosphere", "people": "Iverson, Neal", "repository": "USAP-DC", "science_program": null, "title": "Tertiary creep rates if temperate ice containing greater than 0.7% liquid water", "url": "https://www.usap-dc.org/view/dataset/601833"}, {"dataset_uid": "601460", "doi": "10.15784/601460", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Stream; Lab Experiment; Rheology; Snow/ice; Snow/Ice; Water Content", "people": "Iverson, Neal", "repository": "USAP-DC", "science_program": null, "title": "Softening of temperate ice by interstitial water", "url": "https://www.usap-dc.org/view/dataset/601460"}, {"dataset_uid": "601515", "doi": "10.15784/601515", "keywords": "Antarctica; Glacier Flow; Glacier Hydrology; Glaciological Instruments And Methods; Glaciology; Ice Physics; Ice Stream; Snow/ice; Snow/Ice", "people": "Fowler, Jacob; Iverson, Neal", "repository": "USAP-DC", "science_program": null, "title": "Ice permeameter experimental parameters and results", "url": "https://www.usap-dc.org/view/dataset/601515"}], "date_created": "Wed, 23 Jun 2021 00:00:00 GMT", "description": "Iverson/1643120 This award supports a project to study temperate ice, using both experimental methods and modeling, in order to determine the effect of water on its flow resistance and structure and to study the mobility of water within the ice. A new mathematical model of ice stream flow and temperature is developed in conjunction with these experiments. The model includes water production, storage, and movement in deforming ice and their effects on flow resistance at ice stream margins and on water availability for lubrication of ice stream beds. Results will improve estimates of the evolution of ice stream speed and geometry in a warming climate, and so improve the accuracy of assessments of the contribution of the Antarctic ice sheet to sea level rise over the next century. Ice streams are zones of rapid flow within the Antarctic ice sheet and are primarily responsible for its discharge of ice to the ocean and major effect on sea-level rise. Water plays a central role in the flow of ice streams. It lubricates their bases and softens their margins, where flow speeds abruptly transition from rapid to slow. Within ice stream margins some ice is \"temperate\", meaning that it is at its melting temperature and thus contains intercrystalline water that significantly softens the ice. Two postdoctoral researchers will be supported, trained, and mentored for academic careers, and three undergraduates will be introduced to research in the geosciences. This award is part the NSF/GEO-UK NERC lead agency opportunity (NSF 14-118) and is a collaboration between Iowa State University in the United States and Oxford University in the United Kingdom. The two-phase deformation of temperate ice will be studied, with the objective of determining its effect on the flow of Antarctic ice streams. The project has two components that reinforce each other. First there will be laboratory experiments in which a rotary device at Iowa State University will be used to determine relationships between the water content of temperate ice and its rheology and permeability. The second component will involve the development at Oxford University of a two-phase, fluid-dynamical theory of temperate ice and application of this theory in models of ice-stream dynamics. Results of the experiments will guide the constitutive rules and parameter ranges considered in the theory, and application of elements of the theory will improve interpretations of the experimental results. The theory and resultant models will predict the coupled distributions of temperate ice, water, stress, deformation, and basal slip that control the evolution of ice-stream speed and geometry. The modeling will result in parameterizations that allow ice streaming to be included in continental-scale models of ice sheets in a simplified but physically defensible way.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "GLACIER MOTION/ICE SHEET MOTION; Rheology; Antarctica; LABORATORY; Ice Stream; USA/NSF; USAP-DC; Lab Experiment; Water Content", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Iverson, Neal; Zoet, Lucas", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "NSFGEO-NERC: Collaborative Research: Two-Phase Dynamics of Temperate Ice", "uid": "p0010197", "west": null}, {"awards": "0739444 Rice, James", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 16 Jan 2013 00:00:00 GMT", "description": "Rice 0739444\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to study the mode of formation and causes of glacial earthquakes. The paradigm for glacial flow has been that glaciers flow in a viscous manner, with major changes in the force balance occurring on the decade timescale or longer. The recent discovery of a number of even shorter timescale events has challenged this paradigm. In 2003, it was discovered that Whillans Ice Stream in West Antarctica displays stick-slip behavior on the 10-30 minute timescale, with ice stream speed increasing by a factor of 30 from already high speeds. In the past year, the minimum timescale has been pushed shorter by recognition that a class of recently discovered 50-second-long, magnitude-5 earthquakes are closely associated with changes in the force balance near the calving fronts of large outlet glaciers in both Greenland and East Antarctica. With no adequate theory existing to explain these relatively large earthquakes associated with outlet glaciers, we have begun to investigate the physical mechanisms that must be involved in allowing such a response in a system traditionally not thought capable of generating large variations in forces over timescales less than 100 seconds. The intellectual merit of the work is that large-amplitude, short-timescale variability of glaciers is an important mode of glacier dynamics that has not yet been understood from a first-principles physics perspective. The proposed research addresses this gap in understanding, tying together knowledge from numerous disciplines including glaciology, seismology and fault rupture dynamics, laboratory rock physics, granular flow, fracture mechanics, and hydrogeology. The broader impacts of the work are that there is societal as well as general scientific interest in the stability of the major ice sheets. However, without an understanding of the physical processes governing short time scale variability, it is unlikely that we will be able accurately predict the future of these ice sheets and their impact on sea level changes. The project will also contribute to the development and education of young scientists.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Rapid Glacial Motions; Not provided; Hydrogeology; Fracture Mechanics; Glacier Dynamics; Glacial Earthquakes; Granular Flow; Glacial Underflooding; Glaciology; Ice Stream Margins; Outlet Glaciers", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Rice, James; Platt, John; Suckale, Jenny; Perol, Thibaut; Tsai, Victor", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Transient and Rapid Glacial Motions, including Glacial Earthquakes", "uid": "p0000709", "west": null}, {"awards": "9725882 Raymond, Charles", "bounds_geometry": "POLYGON((-141.6722 -80.1678,-141.34195 -80.1678,-141.0117 -80.1678,-140.68145 -80.1678,-140.3512 -80.1678,-140.02095 -80.1678,-139.6907 -80.1678,-139.36045 -80.1678,-139.0302 -80.1678,-138.69995 -80.1678,-138.3697 -80.1678,-138.3697 -80.4863,-138.3697 -80.8048,-138.3697 -81.1233,-138.3697 -81.4418,-138.3697 -81.7603,-138.3697 -82.0788,-138.3697 -82.3973,-138.3697 -82.7158,-138.3697 -83.0343,-138.3697 -83.3528,-138.69995 -83.3528,-139.0302 -83.3528,-139.36045 -83.3528,-139.6907 -83.3528,-140.02095 -83.3528,-140.3512 -83.3528,-140.68145 -83.3528,-141.0117 -83.3528,-141.34195 -83.3528,-141.6722 -83.3528,-141.6722 -83.0343,-141.6722 -82.7158,-141.6722 -82.3973,-141.6722 -82.0788,-141.6722 -81.7603,-141.6722 -81.4418,-141.6722 -81.1233,-141.6722 -80.8048,-141.6722 -80.4863,-141.6722 -80.1678))", "dataset_titles": "Radar Investigations of Antarctic Ice Stream Margins, Siple Dome, 1998", "datasets": [{"dataset_uid": "609303", "doi": "10.7265/N52B8VZP", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Siple Dome", "people": "Nereson, Nadine A.; Raymond, Charles", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Radar Investigations of Antarctic Ice Stream Margins, Siple Dome, 1998", "url": "https://www.usap-dc.org/view/dataset/609303"}], "date_created": "Fri, 06 Jul 2007 00:00:00 GMT", "description": "9725882 Raymond This award is for support for a program of surface-based radio echo sounding to examine the geometry of the internal layering and the presence or absence of thawed zones outside the margins of active Ice Streams B and E and across the flow band feeding Ice Stream D. Melting in the marginal shear zone and/or on the bed outside an ice stream relates to the amount of support of the ice stream from the sides compared to the bed and the conditions that limit expansion of its width. Radar observations will be extended over the crest of adjacent inter-ice-stream ridges (B/C and D/E) and areas next to the flow band in the onset of D. The purpose is to examine internal layering indicative of the histories of these areas adjacent to ice streams and to determine whether ice streams have expanded into these presently stable areas in the past. These goals concerning the physical controls and history of ice stream width relate to how the discharge of ice streams has changed in the past and could change in the future to affect sea level.", "east": -138.3697, "geometry": "POINT(-140.02095 -81.7603)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS", "is_usap_dc": true, "keywords": "Ice Stream; Antarctica; Bed Geometry; GROUND-BASED OBSERVATIONS; Internal Layering; Internal Layer Geometry; Siple Dome; Shabtaie Ridge; Not provided; Engelhardt Ridge; Ice Stream Margins; Radar; Whillans Ice Stream; GPS; Bed Reflectivity; Macayeal Ice Stream; Surface Geometry", "locations": "Antarctica; Engelhardt Ridge; Macayeal Ice Stream; Shabtaie Ridge; Siple Dome; Whillans Ice Stream", "north": -80.1678, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raymond, Charles; Nereson, Nadine A.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -83.3528, "title": "Internal Stratigraphy and Basal Conditions at the Margins ofActive Ice Streams of the Siple Coast, Antarctica", "uid": "p0000626", "west": -141.6722}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NSFGEO-NERC: Collaborative Research: Two-Phase Dynamics of Temperate Ice
|
1643120 |
2021-06-23 | Iverson, Neal; Zoet, Lucas | Iverson/1643120 This award supports a project to study temperate ice, using both experimental methods and modeling, in order to determine the effect of water on its flow resistance and structure and to study the mobility of water within the ice. A new mathematical model of ice stream flow and temperature is developed in conjunction with these experiments. The model includes water production, storage, and movement in deforming ice and their effects on flow resistance at ice stream margins and on water availability for lubrication of ice stream beds. Results will improve estimates of the evolution of ice stream speed and geometry in a warming climate, and so improve the accuracy of assessments of the contribution of the Antarctic ice sheet to sea level rise over the next century. Ice streams are zones of rapid flow within the Antarctic ice sheet and are primarily responsible for its discharge of ice to the ocean and major effect on sea-level rise. Water plays a central role in the flow of ice streams. It lubricates their bases and softens their margins, where flow speeds abruptly transition from rapid to slow. Within ice stream margins some ice is "temperate", meaning that it is at its melting temperature and thus contains intercrystalline water that significantly softens the ice. Two postdoctoral researchers will be supported, trained, and mentored for academic careers, and three undergraduates will be introduced to research in the geosciences. This award is part the NSF/GEO-UK NERC lead agency opportunity (NSF 14-118) and is a collaboration between Iowa State University in the United States and Oxford University in the United Kingdom. The two-phase deformation of temperate ice will be studied, with the objective of determining its effect on the flow of Antarctic ice streams. The project has two components that reinforce each other. First there will be laboratory experiments in which a rotary device at Iowa State University will be used to determine relationships between the water content of temperate ice and its rheology and permeability. The second component will involve the development at Oxford University of a two-phase, fluid-dynamical theory of temperate ice and application of this theory in models of ice-stream dynamics. Results of the experiments will guide the constitutive rules and parameter ranges considered in the theory, and application of elements of the theory will improve interpretations of the experimental results. The theory and resultant models will predict the coupled distributions of temperate ice, water, stress, deformation, and basal slip that control the evolution of ice-stream speed and geometry. The modeling will result in parameterizations that allow ice streaming to be included in continental-scale models of ice sheets in a simplified but physically defensible way. | None | None | false | false | ||||
Transient and Rapid Glacial Motions, including Glacial Earthquakes
|
0739444 |
2013-01-16 | Rice, James; Platt, John; Suckale, Jenny; Perol, Thibaut; Tsai, Victor | No dataset link provided | Rice 0739444<br/><br/>This award supports a project to study the mode of formation and causes of glacial earthquakes. The paradigm for glacial flow has been that glaciers flow in a viscous manner, with major changes in the force balance occurring on the decade timescale or longer. The recent discovery of a number of even shorter timescale events has challenged this paradigm. In 2003, it was discovered that Whillans Ice Stream in West Antarctica displays stick-slip behavior on the 10-30 minute timescale, with ice stream speed increasing by a factor of 30 from already high speeds. In the past year, the minimum timescale has been pushed shorter by recognition that a class of recently discovered 50-second-long, magnitude-5 earthquakes are closely associated with changes in the force balance near the calving fronts of large outlet glaciers in both Greenland and East Antarctica. With no adequate theory existing to explain these relatively large earthquakes associated with outlet glaciers, we have begun to investigate the physical mechanisms that must be involved in allowing such a response in a system traditionally not thought capable of generating large variations in forces over timescales less than 100 seconds. The intellectual merit of the work is that large-amplitude, short-timescale variability of glaciers is an important mode of glacier dynamics that has not yet been understood from a first-principles physics perspective. The proposed research addresses this gap in understanding, tying together knowledge from numerous disciplines including glaciology, seismology and fault rupture dynamics, laboratory rock physics, granular flow, fracture mechanics, and hydrogeology. The broader impacts of the work are that there is societal as well as general scientific interest in the stability of the major ice sheets. However, without an understanding of the physical processes governing short time scale variability, it is unlikely that we will be able accurately predict the future of these ice sheets and their impact on sea level changes. The project will also contribute to the development and education of young scientists. | None | None | false | false | |||
Internal Stratigraphy and Basal Conditions at the Margins ofActive Ice Streams of the Siple Coast, Antarctica
|
9725882 |
2007-07-06 | Raymond, Charles; Nereson, Nadine A. |
|
9725882 Raymond This award is for support for a program of surface-based radio echo sounding to examine the geometry of the internal layering and the presence or absence of thawed zones outside the margins of active Ice Streams B and E and across the flow band feeding Ice Stream D. Melting in the marginal shear zone and/or on the bed outside an ice stream relates to the amount of support of the ice stream from the sides compared to the bed and the conditions that limit expansion of its width. Radar observations will be extended over the crest of adjacent inter-ice-stream ridges (B/C and D/E) and areas next to the flow band in the onset of D. The purpose is to examine internal layering indicative of the histories of these areas adjacent to ice streams and to determine whether ice streams have expanded into these presently stable areas in the past. These goals concerning the physical controls and history of ice stream width relate to how the discharge of ice streams has changed in the past and could change in the future to affect sea level. | POLYGON((-141.6722 -80.1678,-141.34195 -80.1678,-141.0117 -80.1678,-140.68145 -80.1678,-140.3512 -80.1678,-140.02095 -80.1678,-139.6907 -80.1678,-139.36045 -80.1678,-139.0302 -80.1678,-138.69995 -80.1678,-138.3697 -80.1678,-138.3697 -80.4863,-138.3697 -80.8048,-138.3697 -81.1233,-138.3697 -81.4418,-138.3697 -81.7603,-138.3697 -82.0788,-138.3697 -82.3973,-138.3697 -82.7158,-138.3697 -83.0343,-138.3697 -83.3528,-138.69995 -83.3528,-139.0302 -83.3528,-139.36045 -83.3528,-139.6907 -83.3528,-140.02095 -83.3528,-140.3512 -83.3528,-140.68145 -83.3528,-141.0117 -83.3528,-141.34195 -83.3528,-141.6722 -83.3528,-141.6722 -83.0343,-141.6722 -82.7158,-141.6722 -82.3973,-141.6722 -82.0788,-141.6722 -81.7603,-141.6722 -81.4418,-141.6722 -81.1233,-141.6722 -80.8048,-141.6722 -80.4863,-141.6722 -80.1678)) | POINT(-140.02095 -81.7603) | false | false |