{"dp_type": "Project", "free_text": "Ice Sample Gas Integrity"}
[{"awards": "0230448 Severinghaus, Jeffrey; 0230260 Bender, Michael", "bounds_geometry": "POLYGON((-75.34 86.6,-68.742 86.6,-62.144 86.6,-55.546 86.6,-48.948 86.6,-42.35 86.6,-35.752 86.6,-29.154 86.6,-22.556 86.6,-15.958 86.6,-9.36 86.6,-9.36 83.618,-9.36 80.636,-9.36 77.654,-9.36 74.672,-9.36 71.69,-9.36 68.708,-9.36 65.726,-9.36 62.744,-9.36 59.762,-9.36 56.78,-15.958 56.78,-22.556 56.78,-29.154 56.78,-35.752 56.78,-42.35 56.78,-48.948 56.78,-55.546 56.78,-62.144 56.78,-68.742 56.78,-75.34 56.78,-75.34 59.762,-75.34 62.744,-75.34 65.726,-75.34 68.708,-75.34 71.69,-75.34 74.672,-75.34 77.654,-75.34 80.636,-75.34 83.618,-75.34 86.6))", "dataset_titles": "Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001; Trapped Gas Composition and Chronology of the Vostok Ice Core", "datasets": [{"dataset_uid": "609311", "doi": "10.7265/N5P26W12", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Lake Vostok; Paleoclimate; Vostok; Vostok Ice Core", "people": "Bender, Michael; Suwa, Makoto", "repository": "USAP-DC", "science_program": null, "title": "Trapped Gas Composition and Chronology of the Vostok Ice Core", "url": "https://www.usap-dc.org/view/dataset/609311"}, {"dataset_uid": "609290", "doi": "10.7265/N5FJ2DQC", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciology; Paleoclimate; Siple Dome; Snow/ice; Snow/Ice; South Pole", "people": "Battle, Mark; Severinghaus, Jeffrey P.; Bender, Michael", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Firn Air Inert Gas and Oxygen Observations from Siple Dome, 1996, and the South Pole, 2001", "url": "https://www.usap-dc.org/view/dataset/609290"}], "date_created": "Wed, 18 Jan 2006 00:00:00 GMT", "description": "High latitude deep ice cores contain fundamental records of polar temperatures, atmospheric dust loads (and continental aridity), greenhouse gas concentrations, the status of the biosphere, and other essential properties of past environments. An accurate chronology for these records is needed if their significance is to be fully realized. The dating challenge has stimulated efforts at orbital tuning. In this approach, one varies a timescale, within allowable limits, to optimize the match between a paleoenvironmental property and a curve of insolation through time. The ideal property would vary with time due to direct insolation forcing. It would be unaffected by complex climate feedbacks and teleconnections, and it would give a clean record with high signal/noise ratio. It is argued strongly that the O2/N2 ratio of ice core trapped gases is such a property, and evidence is presented that this property, whose atmospheric ratio is nearly constant, is tied to local summertime insolation. This award will support a project to analyze the O2/N2 ratios at 1 kyr intervals from ~ 115-400 ka in the Vostok ice core. Ancillary measurements will be made of Ar/N2, and Ne/N2 and heavy noble gas ratios, in order to understand bubble close-off fractionation and its manifestation in the Vostok trapped gas record. O2/N2 variations will be matched with summertime insolation at Vostok to achieve a high-accuracy chronology for the Vostok core. The Vostok and other correlatable climate records will then be reexamined to improve our understanding of the dynamics of Pleistocene climate change.", "east": 106.8, "geometry": "POINT(106.8 -72.4667)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e FLASKS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Paleoclimate; Siple Dome; Ice Age; Shallow Firn Air; Firn Air Isotope Measurements; Polar Firn Air; Ice Sample Gas Integrity; Oxygen Isotope; Noble Gas; Ice Core Gas Records; Atmospheric Gases; Trapped Gases; Not provided; LABORATORY; Vostok; Firn Air Isotopes; Thermal Fractionation; Ice Core Chemistry; Trapped Air Bubbles; Ice Core; Antarctica; South Pole; Ice Core Data; GROUND-BASED OBSERVATIONS; Gas Age; Firn Isotopes", "locations": "Antarctica; Vostok; Siple Dome; South Pole", "north": -72.4667, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Battle, Mark; Bender, Michael; Suwa, Makoto; Severinghaus, Jeffrey P.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -72.4667, "title": "Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core", "uid": "p0000257", "west": 106.8}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core
|
0230448 0230260 |
2006-01-18 | Battle, Mark; Bender, Michael; Suwa, Makoto; Severinghaus, Jeffrey P. |
|
High latitude deep ice cores contain fundamental records of polar temperatures, atmospheric dust loads (and continental aridity), greenhouse gas concentrations, the status of the biosphere, and other essential properties of past environments. An accurate chronology for these records is needed if their significance is to be fully realized. The dating challenge has stimulated efforts at orbital tuning. In this approach, one varies a timescale, within allowable limits, to optimize the match between a paleoenvironmental property and a curve of insolation through time. The ideal property would vary with time due to direct insolation forcing. It would be unaffected by complex climate feedbacks and teleconnections, and it would give a clean record with high signal/noise ratio. It is argued strongly that the O2/N2 ratio of ice core trapped gases is such a property, and evidence is presented that this property, whose atmospheric ratio is nearly constant, is tied to local summertime insolation. This award will support a project to analyze the O2/N2 ratios at 1 kyr intervals from ~ 115-400 ka in the Vostok ice core. Ancillary measurements will be made of Ar/N2, and Ne/N2 and heavy noble gas ratios, in order to understand bubble close-off fractionation and its manifestation in the Vostok trapped gas record. O2/N2 variations will be matched with summertime insolation at Vostok to achieve a high-accuracy chronology for the Vostok core. The Vostok and other correlatable climate records will then be reexamined to improve our understanding of the dynamics of Pleistocene climate change. | POLYGON((-75.34 86.6,-68.742 86.6,-62.144 86.6,-55.546 86.6,-48.948 86.6,-42.35 86.6,-35.752 86.6,-29.154 86.6,-22.556 86.6,-15.958 86.6,-9.36 86.6,-9.36 83.618,-9.36 80.636,-9.36 77.654,-9.36 74.672,-9.36 71.69,-9.36 68.708,-9.36 65.726,-9.36 62.744,-9.36 59.762,-9.36 56.78,-15.958 56.78,-22.556 56.78,-29.154 56.78,-35.752 56.78,-42.35 56.78,-48.948 56.78,-55.546 56.78,-62.144 56.78,-68.742 56.78,-75.34 56.78,-75.34 59.762,-75.34 62.744,-75.34 65.726,-75.34 68.708,-75.34 71.69,-75.34 74.672,-75.34 77.654,-75.34 80.636,-75.34 83.618,-75.34 86.6)) | POINT(106.8 -72.4667) | false | false |