{"dp_type": "Project", "free_text": "Grain Growth"}
[{"awards": "1141411 Baker, Ian", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Laboratory Experiments with H2SO4-Doped Ice; The Effects of Soluble Impurities on the Flow and Fabric of Polycrystalline Ice", "datasets": [{"dataset_uid": "600380", "doi": "10.15784/600380", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Physical Properties; Snow", "people": "Baker, Ian", "repository": "USAP-DC", "science_program": null, "title": "The Effects of Soluble Impurities on the Flow and Fabric of Polycrystalline Ice", "url": "https://www.usap-dc.org/view/dataset/600380"}, {"dataset_uid": "601081", "doi": "10.15784/601081", "keywords": null, "people": "Hammonds, Kevin", "repository": "USAP-DC", "science_program": null, "title": "Laboratory Experiments with H2SO4-Doped Ice", "url": "https://www.usap-dc.org/view/dataset/601081"}], "date_created": "Fri, 09 Oct 2020 00:00:00 GMT", "description": "This award supports a project to undertake a systematic examination of the effects of soluble impurities, particularly sulfuric acid, on the creep of polycrystalline ice as function of temperature, strain rate and impurity concentration. The working hypothesis is that soluble impurities will increase the flow rate of polycrystalline ice compared to high-purity ice, that this effect will be temperature dependent and that the impurities by affecting the re-crystallization and grain growth will change the fabric of the ice. Both H2SO4-doped and high-purity poly-crystalline ice will be produced by freezing sheets of ice, breaking them up, sieving the ice particles and then sintering them in a mold into fine-grained cylindrical specimens with at least ten grains across their diameter. The resulting microstructures (dislocation structure, grain size and shape, grain boundary character and micro-structural location of the acid) will be characterized using a variety of techniques including: optical microscopy, scanning electron microscopy, including secondary electron imaging, electron backscattered patterns, energy dispersive X-ray spectroscopy, electron channeling contrast imaging, and X-ray topography. The creep of both the H2SO4-doped and the high-purity polycrystalline ice will be undertaken at a range of temperatures and stresses. The ice?s response to the creep deformation (grain boundary sliding, dislocation motion, re-crystallization, grain boundary migration, impurity redistribution) will be studied using a combination of methods. The creep behavior will be modeled and related to the microstructure. Of particular interest is how impurities affect the activation energy for creep. The intellectual merit of the work is that it will lead to a better understanding of glacier ice and will enable glaciologists to model the influence of impurities on the flow and fabric development in polycrystalline ice. The broader impacts of the project include the knowledge that will be gained of the effects of impurities on the flow of ice which will allow paleoclimatologists to better interpret ice core data and will allow scientists developing predictive models to better address the flow of ice sheets under various climate change scenarios. The project will also lead to the education and training of a Ph.D. student, several undergraduates and some high school students. Results from the research will be published in refereed journals. Several undergraduates, typically two per year, will also perform the work. Dartmouth aggressively courts minority students at all degree levels, and we will seek women or minority group undergraduates for this project. The undergraduates will be supported by Dartmouth?s nationally-honored Women In Science Project or by REU funding. The undergraduates? research will integrate closely with the Ph.D. student?s studies. Hanover High School students will also be involved in the project and develop an educational kit to introduce students to the properties of ice. Results from the research will be published in refereed journals and presented at conferences.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USA/NSF; USAP-DC; SNOW/ICE; Amd/Us; LABORATORY; Antarctica; AMD", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Baker, Ian", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The Effects of Soluble Impurities on the Flow and Fabric of Polycrystalline Ice", "uid": "p0010133", "west": -180.0}, {"awards": "0538494 Meese, Debra", "bounds_geometry": null, "dataset_titles": "Microstructural Location and Composition of Impurities in Polar Ice Cores", "datasets": [{"dataset_uid": "609436", "doi": "10.7265/N5DF6P5P", "keywords": "Antarctica; Arctic; Byrd Glacier; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; Vostok Ice Core", "people": "Obbard, Rachel; Baker, Ian", "repository": "USAP-DC", "science_program": null, "title": "Microstructural Location and Composition of Impurities in Polar Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609436"}], "date_created": "Thu, 03 Jun 2010 00:00:00 GMT", "description": "0538494\u003cbr/\u003eMeese\u003cbr/\u003eThis award supports a project for physical properties research on snow pits and firn/ice cores with specific objectives that include stratigraphic analysis including determination of accumulation rates, annual layers, depth hoar, ice and wind crusts and rates of grain growth with depth. Studies of firn densification rates and how these parameters relate to the meteorology and climatology over the last 200 years of snow accumulation in Antarctica will also be investigated. The project will also determine the seasonality of accumulation by co-registration of stratigraphy and chemistry and determination of chemical species at the grain boundaries, how these may change with depth/densification (and therefore temperature), precipitation, and may affect grain growth. Fabric analyses will be made, including variation with depth, location on undulations and if any variation exists with climate/chemistry. The large spatial coverage of the US ITASE program offers the opportunity to determine how these parameters are affected by a large range of temperature, precipitation and topographic effects. The intellectual merit of the project includes the fact that ITASE is the terrestrial equivalent of a polar research vessel that provides a unique, logistically efficient, multi-dimensional (x, y, z and time) view of the atmosphere, ice sheet and their histories. Physical properties measurements/ analyses are an integral part of understanding the dynamic processes to which the accumulated snow is subjected. Recent advancements in the field along with multiple core sites provide an excellent opportunity to gain a much broader understanding of the spatial, temporal and physical variables that impact firnification and the possible resultant impact on climatic interpretation. In terms of broader impacts, the data collected by US ITASE and its international ITASE partners is available to a broad scientific community. US ITASE has an extensive program of public outreach and provides significant opportunities for many students to experience multidisciplinary Antarctic research. A graduate student, a post-doctoral fellow and at least one undergraduate would be funded by this work. Dr. Meese is also a member of the New England Science Collaborative, an organization that educates the public on climate change based on recent scientific advancements.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e SCANNING ELECTRON MICROSCOPES", "is_usap_dc": false, "keywords": "LABORATORY; Grain Growth; FIELD SURVEYS; Accumulation Rate; Firn Core; FIELD INVESTIGATION; Chemistry; Snow Pit; Depth Hoar; Firn Density; Ice Core; Not provided; Stratigraphic Analysis; Firn; US ITASE; Annual Layers", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Meese, Deb; MEESE, DEBRA", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "The Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome", "uid": "p0000289", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
The Effects of Soluble Impurities on the Flow and Fabric of Polycrystalline Ice
|
1141411 |
2020-10-09 | Baker, Ian |
|
This award supports a project to undertake a systematic examination of the effects of soluble impurities, particularly sulfuric acid, on the creep of polycrystalline ice as function of temperature, strain rate and impurity concentration. The working hypothesis is that soluble impurities will increase the flow rate of polycrystalline ice compared to high-purity ice, that this effect will be temperature dependent and that the impurities by affecting the re-crystallization and grain growth will change the fabric of the ice. Both H2SO4-doped and high-purity poly-crystalline ice will be produced by freezing sheets of ice, breaking them up, sieving the ice particles and then sintering them in a mold into fine-grained cylindrical specimens with at least ten grains across their diameter. The resulting microstructures (dislocation structure, grain size and shape, grain boundary character and micro-structural location of the acid) will be characterized using a variety of techniques including: optical microscopy, scanning electron microscopy, including secondary electron imaging, electron backscattered patterns, energy dispersive X-ray spectroscopy, electron channeling contrast imaging, and X-ray topography. The creep of both the H2SO4-doped and the high-purity polycrystalline ice will be undertaken at a range of temperatures and stresses. The ice?s response to the creep deformation (grain boundary sliding, dislocation motion, re-crystallization, grain boundary migration, impurity redistribution) will be studied using a combination of methods. The creep behavior will be modeled and related to the microstructure. Of particular interest is how impurities affect the activation energy for creep. The intellectual merit of the work is that it will lead to a better understanding of glacier ice and will enable glaciologists to model the influence of impurities on the flow and fabric development in polycrystalline ice. The broader impacts of the project include the knowledge that will be gained of the effects of impurities on the flow of ice which will allow paleoclimatologists to better interpret ice core data and will allow scientists developing predictive models to better address the flow of ice sheets under various climate change scenarios. The project will also lead to the education and training of a Ph.D. student, several undergraduates and some high school students. Results from the research will be published in refereed journals. Several undergraduates, typically two per year, will also perform the work. Dartmouth aggressively courts minority students at all degree levels, and we will seek women or minority group undergraduates for this project. The undergraduates will be supported by Dartmouth?s nationally-honored Women In Science Project or by REU funding. The undergraduates? research will integrate closely with the Ph.D. student?s studies. Hanover High School students will also be involved in the project and develop an educational kit to introduce students to the properties of ice. Results from the research will be published in refereed journals and presented at conferences. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||
The Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome
|
0538494 |
2010-06-03 | Meese, Deb; MEESE, DEBRA |
|
0538494<br/>Meese<br/>This award supports a project for physical properties research on snow pits and firn/ice cores with specific objectives that include stratigraphic analysis including determination of accumulation rates, annual layers, depth hoar, ice and wind crusts and rates of grain growth with depth. Studies of firn densification rates and how these parameters relate to the meteorology and climatology over the last 200 years of snow accumulation in Antarctica will also be investigated. The project will also determine the seasonality of accumulation by co-registration of stratigraphy and chemistry and determination of chemical species at the grain boundaries, how these may change with depth/densification (and therefore temperature), precipitation, and may affect grain growth. Fabric analyses will be made, including variation with depth, location on undulations and if any variation exists with climate/chemistry. The large spatial coverage of the US ITASE program offers the opportunity to determine how these parameters are affected by a large range of temperature, precipitation and topographic effects. The intellectual merit of the project includes the fact that ITASE is the terrestrial equivalent of a polar research vessel that provides a unique, logistically efficient, multi-dimensional (x, y, z and time) view of the atmosphere, ice sheet and their histories. Physical properties measurements/ analyses are an integral part of understanding the dynamic processes to which the accumulated snow is subjected. Recent advancements in the field along with multiple core sites provide an excellent opportunity to gain a much broader understanding of the spatial, temporal and physical variables that impact firnification and the possible resultant impact on climatic interpretation. In terms of broader impacts, the data collected by US ITASE and its international ITASE partners is available to a broad scientific community. US ITASE has an extensive program of public outreach and provides significant opportunities for many students to experience multidisciplinary Antarctic research. A graduate student, a post-doctoral fellow and at least one undergraduate would be funded by this work. Dr. Meese is also a member of the New England Science Collaborative, an organization that educates the public on climate change based on recent scientific advancements. | None | None | false | false |