{"dp_type": "Project", "free_text": "Geochemical Composition"}
[{"awards": "1941304 Sherrell, Robert; 1941483 Yager, Patricia; 1941292 St-Laurent, Pierre; 1941308 Fitzsimmons, Jessica; 1941327 Stammerjohn, Sharon", "bounds_geometry": "POLYGON((-120 -71,-118 -71,-116 -71,-114 -71,-112 -71,-110 -71,-108 -71,-106 -71,-104 -71,-102 -71,-100 -71,-100 -71.4,-100 -71.8,-100 -72.2,-100 -72.6,-100 -73,-100 -73.4,-100 -73.8,-100 -74.2,-100 -74.6,-100 -75,-102 -75,-104 -75,-106 -75,-108 -75,-110 -75,-112 -75,-114 -75,-116 -75,-118 -75,-120 -75,-120 -74.6,-120 -74.2,-120 -73.8,-120 -73.4,-120 -73,-120 -72.6,-120 -72.2,-120 -71.8,-120 -71.4,-120 -71))", "dataset_titles": "Dataset: A numerical simulation of the ocean, sea ice and ice shelves in the Amundsen Sea (Antarctica) over the period 2006-2022 and its associated code and input files; Expedition Data of NBP2202; Numerical experiments examining the response of onshore oceanic heat supply to yearly changes in the Amundsen Sea icescape (Antarctica); Vertical ocean profiles collected by a Conductivity-Temperature-Depth (CTD) package in the Amundsen Sea", "datasets": [{"dataset_uid": "601785", "doi": "10.15784/601785", "keywords": "Amundsen Sea; Antarctica; Cryosphere; CTD; NBP2202; Oceanography; R/v Nathaniel B. Palmer", "people": "Stammerjohn, Sharon", "repository": "USAP-DC", "science_program": "Thwaites (ITGC)", "title": "Vertical ocean profiles collected by a Conductivity-Temperature-Depth (CTD) package in the Amundsen Sea", "url": "https://www.usap-dc.org/view/dataset/601785"}, {"dataset_uid": "200400", "doi": "10.17882/99231", "keywords": null, "people": null, "repository": "SEANOE", "science_program": null, "title": "Numerical experiments examining the response of onshore oceanic heat supply to yearly changes in the Amundsen Sea icescape (Antarctica)", "url": "https://doi.org/10.17882/99231"}, {"dataset_uid": "200399", "doi": "10.25773/bt54-sj65", "keywords": null, "people": null, "repository": "William \u0026 Mary ScholarWorks", "science_program": null, "title": "Dataset: A numerical simulation of the ocean, sea ice and ice shelves in the Amundsen Sea (Antarctica) over the period 2006-2022 and its associated code and input files", "url": "https://doi.org/10.25773/bt54-sj65"}, {"dataset_uid": "200311", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP2202", "url": "https://www.rvdata.us/search/cruise/NBP2202"}], "date_created": "Fri, 20 Aug 2021 00:00:00 GMT", "description": "Part I: Non-technical summary: The Amundsen Sea is adjacent to the West Antarctic Ice Sheet (WAIS) and hosts the most productive coastal ecosystem in all of Antarctica, with vibrant green waters visible from space and an atmospheric carbon dioxide uptake rate ten times higher than the Southern Ocean average. The region is also an area highly impacted by climate change and glacier ice loss. Upwelling of warm deep water is causing melt under the ice sheet, which is contributing to sea level rise and added nutrient inputs to the region. This is a project that is jointly funded by the National Science Foundation\u2019s Directorate of Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award, each Agency funds the proportion of the budget and the investigators associated with its own country. In this collaboration, the US team will undertake biogeochemical sampling alongside a UK-funded physical oceanographic program to evaluate the contribution of micronutrients such as iron from glacial meltwater to ecosystem productivity and carbon cycling. Measurements will be incorporated into computer simulations to examine ecosystem responses to further glacial melting. Results will help predict future impacts on the region and determine whether the climate sensitivity of the Amundsen Sea ecosystem represents the front line of processes generalizable to the greater Antarctic. This study is aligned with the large International Thwaites Glacier Collaboration (ITGC) and will make data available to the full scientific community. The program will provide training for undergraduate, graduate, post-doctoral, and early-career scientists in both science and communication. The team will also develop out-of-school science experiences for middle and high schoolers related to climate change and Antarctica. Part II: Technical summary: The Amundsen Sea hosts the most productive polynya in all of Antarctica, with atmospheric carbon dioxide uptake rates ten times higher than the Southern Ocean average. The region is vulnerable to climate change, experiencing rapid losses in sea ice, a changing icescape and some of the fastest melting glaciers flowing from the West Antarctic Ice Sheet, a process being studied by the International Thwaites Glacier Collaboration. The biogeochemical composition of the outflow from the glaciers surrounding the Amundsen Sea is largely unstudied. In collaboration with a UK-funded physical oceanographic program, ARTEMIS is using shipboard sampling for trace metals, carbonate system, nutrients, organic matter, and microorganisms, with biogeochemical sensors on autonomous vehicles to gather data needed to understand the impact of the melting ice sheet on both the coastal ecosystem and the regional carbon cycle. These measurements, along with access to the advanced physical oceanographic measurements will allow this team to 1) bridge the gap between biogeochemistry and physics by adding estimates of fluxes and transport of limiting micronutrients; 2) provide biogeochemical context to broaden understanding of the global significance of ocean-ice shelf interactions; 3) determine processes and scales of variability in micronutrient supply that drive the ten-fold increase in carbon dioxide uptake, and 4) identify small-scale processes key to iron and carbon cycling using optimized field sampling. Observations will be integrated into an ocean model to enhance predictive capabilities of regional ocean function. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -100.0, "geometry": "POINT(-110 -73)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; USA/NSF; USAP-DC; AMD; Amundsen Sea; Amd/Us; SHIPS", "locations": "Amundsen Sea", "north": -71.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Yager, Patricia; Medeiros, Patricia; Sherrell, Robert; St-Laurent, Pierre; Fitzsimmons, Jessica; Stammerjohn, Sharon", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "USAP-DC", "repositories": "R2R; SEANOE; USAP-DC; William \u0026 Mary ScholarWorks", "science_programs": "Thwaites (ITGC)", "south": -75.0, "title": "NSFGEO-NERC: Collaborative Research: Accelerating Thwaites Ecosystem Impacts for the Southern Ocean (ARTEMIS)", "uid": "p0010249", "west": -120.0}, {"awards": "9980538 Lohmann, Kyger", "bounds_geometry": "POINT(-56 -64)", "dataset_titles": "Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica", "datasets": [{"dataset_uid": "600019", "doi": "", "keywords": null, "people": "Lohmann, Kyger", "repository": "USAP-DC", "science_program": null, "title": "Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600019"}], "date_created": "Mon, 11 Jun 2001 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research for construction of a long-term record of climate during the late Cretaceous and early Paleogene to assess the annual seasonality in temperature on the coastal margin of Antarctica. Stable isotope and element compositions of well-preserved bivalve shells collected on Seymour Island will be the primary source of data used to reconstruct paleoenvironmental conditions. Seasonal temperature records collected through high-resolution sampling along growth structures in bivalve shells will allow seasonality to be assessed during different climate states and during periods of rapid climate change. In addition, high stratigraphic resolution will enable this project to detect the presence and frequency of short-lived thermal excursions that may have extended to such high latitudes. To compile a reliable temporal record of paleoclimate, two major avenues of investigation will be undertaken: 1) precise stratigraphic (and therefore, temporal) placement of fossils over a large geographic area will be employed through the use of a graphical technique employing geometric projections; 2) stable isotope and elemental analyses will be performed to derive paleotemperatures and to evaluate diagenetic alteration of shell materials. To provide realistic comparisons of paleotemperatures across stratigraphic horizons, this study will focus on a single taxon, thus avoiding complications due to the mixing of faunal assemblages that have been encountered in previous studies of this region. The near-shore marine fossil record on Seymour Island provides a unique opportunity to address many questions about the Antarctic paleoenvironment, including the relation between seasonality and different climate states, the influence of climate on biogeographic distribution of specific taxa, the effect of ice-volume changes on the stable isotope record from the late Cretaceous through the Eocene, and the plausibility of high-latitude bottom water formation during this time interval. In particular, information that will be collected concerning patterns of seasonality and the presence (or absence) of short-lived thermal excursions will be extremely valuable to an understanding of the response of high latitude sites during climate transitions from globally cool to globally warm conditions.", "east": -56.0, "geometry": "POINT(-56 -64)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided; Bivalves; Geochemical Composition; Carbon Isotopes; Climate", "locations": null, "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE \u003e EOCENE", "persons": "Lohmann, Kyger; Barrera, Enriqueta", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Evolution of Sea Surface Temperatures in the Coastal Antarctic Paleoenvironment During the Late Cretaceous and Paleogene", "uid": "p0000613", "west": -56.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NSFGEO-NERC: Collaborative Research: Accelerating Thwaites Ecosystem Impacts for the Southern Ocean (ARTEMIS)
|
1941304 1941483 1941292 1941308 1941327 |
2021-08-20 | Yager, Patricia; Medeiros, Patricia; Sherrell, Robert; St-Laurent, Pierre; Fitzsimmons, Jessica; Stammerjohn, Sharon | Part I: Non-technical summary: The Amundsen Sea is adjacent to the West Antarctic Ice Sheet (WAIS) and hosts the most productive coastal ecosystem in all of Antarctica, with vibrant green waters visible from space and an atmospheric carbon dioxide uptake rate ten times higher than the Southern Ocean average. The region is also an area highly impacted by climate change and glacier ice loss. Upwelling of warm deep water is causing melt under the ice sheet, which is contributing to sea level rise and added nutrient inputs to the region. This is a project that is jointly funded by the National Science Foundation’s Directorate of Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Upon successful joint determination of an award, each Agency funds the proportion of the budget and the investigators associated with its own country. In this collaboration, the US team will undertake biogeochemical sampling alongside a UK-funded physical oceanographic program to evaluate the contribution of micronutrients such as iron from glacial meltwater to ecosystem productivity and carbon cycling. Measurements will be incorporated into computer simulations to examine ecosystem responses to further glacial melting. Results will help predict future impacts on the region and determine whether the climate sensitivity of the Amundsen Sea ecosystem represents the front line of processes generalizable to the greater Antarctic. This study is aligned with the large International Thwaites Glacier Collaboration (ITGC) and will make data available to the full scientific community. The program will provide training for undergraduate, graduate, post-doctoral, and early-career scientists in both science and communication. The team will also develop out-of-school science experiences for middle and high schoolers related to climate change and Antarctica. Part II: Technical summary: The Amundsen Sea hosts the most productive polynya in all of Antarctica, with atmospheric carbon dioxide uptake rates ten times higher than the Southern Ocean average. The region is vulnerable to climate change, experiencing rapid losses in sea ice, a changing icescape and some of the fastest melting glaciers flowing from the West Antarctic Ice Sheet, a process being studied by the International Thwaites Glacier Collaboration. The biogeochemical composition of the outflow from the glaciers surrounding the Amundsen Sea is largely unstudied. In collaboration with a UK-funded physical oceanographic program, ARTEMIS is using shipboard sampling for trace metals, carbonate system, nutrients, organic matter, and microorganisms, with biogeochemical sensors on autonomous vehicles to gather data needed to understand the impact of the melting ice sheet on both the coastal ecosystem and the regional carbon cycle. These measurements, along with access to the advanced physical oceanographic measurements will allow this team to 1) bridge the gap between biogeochemistry and physics by adding estimates of fluxes and transport of limiting micronutrients; 2) provide biogeochemical context to broaden understanding of the global significance of ocean-ice shelf interactions; 3) determine processes and scales of variability in micronutrient supply that drive the ten-fold increase in carbon dioxide uptake, and 4) identify small-scale processes key to iron and carbon cycling using optimized field sampling. Observations will be integrated into an ocean model to enhance predictive capabilities of regional ocean function. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-120 -71,-118 -71,-116 -71,-114 -71,-112 -71,-110 -71,-108 -71,-106 -71,-104 -71,-102 -71,-100 -71,-100 -71.4,-100 -71.8,-100 -72.2,-100 -72.6,-100 -73,-100 -73.4,-100 -73.8,-100 -74.2,-100 -74.6,-100 -75,-102 -75,-104 -75,-106 -75,-108 -75,-110 -75,-112 -75,-114 -75,-116 -75,-118 -75,-120 -75,-120 -74.6,-120 -74.2,-120 -73.8,-120 -73.4,-120 -73,-120 -72.6,-120 -72.2,-120 -71.8,-120 -71.4,-120 -71)) | POINT(-110 -73) | false | false | ||||
Evolution of Sea Surface Temperatures in the Coastal Antarctic Paleoenvironment During the Late Cretaceous and Paleogene
|
9980538 |
2001-06-11 | Lohmann, Kyger; Barrera, Enriqueta |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research for construction of a long-term record of climate during the late Cretaceous and early Paleogene to assess the annual seasonality in temperature on the coastal margin of Antarctica. Stable isotope and element compositions of well-preserved bivalve shells collected on Seymour Island will be the primary source of data used to reconstruct paleoenvironmental conditions. Seasonal temperature records collected through high-resolution sampling along growth structures in bivalve shells will allow seasonality to be assessed during different climate states and during periods of rapid climate change. In addition, high stratigraphic resolution will enable this project to detect the presence and frequency of short-lived thermal excursions that may have extended to such high latitudes. To compile a reliable temporal record of paleoclimate, two major avenues of investigation will be undertaken: 1) precise stratigraphic (and therefore, temporal) placement of fossils over a large geographic area will be employed through the use of a graphical technique employing geometric projections; 2) stable isotope and elemental analyses will be performed to derive paleotemperatures and to evaluate diagenetic alteration of shell materials. To provide realistic comparisons of paleotemperatures across stratigraphic horizons, this study will focus on a single taxon, thus avoiding complications due to the mixing of faunal assemblages that have been encountered in previous studies of this region. The near-shore marine fossil record on Seymour Island provides a unique opportunity to address many questions about the Antarctic paleoenvironment, including the relation between seasonality and different climate states, the influence of climate on biogeographic distribution of specific taxa, the effect of ice-volume changes on the stable isotope record from the late Cretaceous through the Eocene, and the plausibility of high-latitude bottom water formation during this time interval. In particular, information that will be collected concerning patterns of seasonality and the presence (or absence) of short-lived thermal excursions will be extremely valuable to an understanding of the response of high latitude sites during climate transitions from globally cool to globally warm conditions. | POINT(-56 -64) | POINT(-56 -64) | false | false |