{"dp_type": "Project", "free_text": "GNSS RECEIVER"}
[{"awards": "2114454 Greenbaum, Jamin", "bounds_geometry": "POLYGON((-107.5 -74.5,-107.3 -74.5,-107.1 -74.5,-106.9 -74.5,-106.7 -74.5,-106.5 -74.5,-106.3 -74.5,-106.1 -74.5,-105.9 -74.5,-105.7 -74.5,-105.5 -74.5,-105.5 -74.6,-105.5 -74.7,-105.5 -74.8,-105.5 -74.9,-105.5 -75,-105.5 -75.1,-105.5 -75.2,-105.5 -75.3,-105.5 -75.4,-105.5 -75.5,-105.7 -75.5,-105.9 -75.5,-106.1 -75.5,-106.3 -75.5,-106.5 -75.5,-106.7 -75.5,-106.9 -75.5,-107.1 -75.5,-107.3 -75.5,-107.5 -75.5,-107.5 -75.4,-107.5 -75.3,-107.5 -75.2,-107.5 -75.1,-107.5 -75,-107.5 -74.9,-107.5 -74.8,-107.5 -74.7,-107.5 -74.6,-107.5 -74.5))", "dataset_titles": "AXCTD and AXBT Profiles from the Amundsen Sea", "datasets": [{"dataset_uid": "601894", "doi": "10.15784/601894", "keywords": "Amundsen Sea; Antarctica; Araon; AXBT; AXCTD; Cryosphere; CTD; Helicopter; Icebreaker; Oceans; Thwaites Glacier; XBT", "people": "Greenbaum, Jamin", "repository": "USAP-DC", "science_program": null, "title": "AXCTD and AXBT Profiles from the Amundsen Sea", "url": "https://www.usap-dc.org/view/dataset/601894"}], "date_created": "Mon, 10 Feb 2025 00:00:00 GMT", "description": "The ice shelves around the perimeter Antarctica hold back inland ice that has the potential to raise global sea level by meters. By how much and how rapidly this could occur is a central question in glaciology. The underside of these ice shelves is in contact with the ocean, and there are signs that warming of ocean water is causing melting and retreat of these shelves, with direct implications for sea-level rise. This project will seize an emergent opportunity to work with Australian and South Korean colleagues to acquire snapshot profiles of ocean temperature, salinity, and velocity, and improve bathymetric knowledge, where no prior data exist. The team will work near three glaciers draining ice with substantial sea-level potential from the East and West Antarctic Ice Sheets. The targets are Shackleton and Cook Ice Shelves in East Antarctica, and Thwaites Glacier in West Antarctica. An undergraduate student will be engaged through the Scripps Undergraduate Research Fellowship program and the team will work through the Scripps Educational Alliances program to identify educational outreach opportunities through which to build community engagement in this project. The team will use high-resolution general circulation model simulations to optimize sensor targeting (to be deployed from helicopter and fixed-wing aircraft) and evaluate the relative roles of subglacial freshwater discharge and ocean forcing on subglacial melt rates. The aim is to better understand why grounding-line melt rates are higher at the East Antarctic sites despite data indicating warmer ambient ocean temperatures at the West Antarctic sites. Such behavior could be explained by discharge of subglacial freshwater into ice-shelf cavities, but insufficient data currently exist to test this hypothesis. The team aims to build on ongoing international, collaborative airborne oceanographic sampling with colleagues in the Republic of Korea, Australia, and the United States. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -105.5, "geometry": "POINT(-106.5 -75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e BEIDOU \u003e GNSS RECEIVER", "is_usap_dc": true, "keywords": "ROTORCRAFT/HELICOPTER; CONDUCTIVITY; OCEAN TEMPERATURE; Amundsen Sea", "locations": "Amundsen Sea", "north": -74.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Greenbaum, Jamin", "platforms": "AIR-BASED PLATFORMS \u003e ROTORCRAFT/HELICOPTER", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.5, "title": "RAPID: International Collaborative Airborne Sensor Deployments near Antarctic Ice Shelves", "uid": "p0010497", "west": -107.5}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RAPID: International Collaborative Airborne Sensor Deployments near Antarctic Ice Shelves
|
2114454 |
2025-02-10 | Greenbaum, Jamin |
|
The ice shelves around the perimeter Antarctica hold back inland ice that has the potential to raise global sea level by meters. By how much and how rapidly this could occur is a central question in glaciology. The underside of these ice shelves is in contact with the ocean, and there are signs that warming of ocean water is causing melting and retreat of these shelves, with direct implications for sea-level rise. This project will seize an emergent opportunity to work with Australian and South Korean colleagues to acquire snapshot profiles of ocean temperature, salinity, and velocity, and improve bathymetric knowledge, where no prior data exist. The team will work near three glaciers draining ice with substantial sea-level potential from the East and West Antarctic Ice Sheets. The targets are Shackleton and Cook Ice Shelves in East Antarctica, and Thwaites Glacier in West Antarctica. An undergraduate student will be engaged through the Scripps Undergraduate Research Fellowship program and the team will work through the Scripps Educational Alliances program to identify educational outreach opportunities through which to build community engagement in this project. The team will use high-resolution general circulation model simulations to optimize sensor targeting (to be deployed from helicopter and fixed-wing aircraft) and evaluate the relative roles of subglacial freshwater discharge and ocean forcing on subglacial melt rates. The aim is to better understand why grounding-line melt rates are higher at the East Antarctic sites despite data indicating warmer ambient ocean temperatures at the West Antarctic sites. Such behavior could be explained by discharge of subglacial freshwater into ice-shelf cavities, but insufficient data currently exist to test this hypothesis. The team aims to build on ongoing international, collaborative airborne oceanographic sampling with colleagues in the Republic of Korea, Australia, and the United States. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-107.5 -74.5,-107.3 -74.5,-107.1 -74.5,-106.9 -74.5,-106.7 -74.5,-106.5 -74.5,-106.3 -74.5,-106.1 -74.5,-105.9 -74.5,-105.7 -74.5,-105.5 -74.5,-105.5 -74.6,-105.5 -74.7,-105.5 -74.8,-105.5 -74.9,-105.5 -75,-105.5 -75.1,-105.5 -75.2,-105.5 -75.3,-105.5 -75.4,-105.5 -75.5,-105.7 -75.5,-105.9 -75.5,-106.1 -75.5,-106.3 -75.5,-106.5 -75.5,-106.7 -75.5,-106.9 -75.5,-107.1 -75.5,-107.3 -75.5,-107.5 -75.5,-107.5 -75.4,-107.5 -75.3,-107.5 -75.2,-107.5 -75.1,-107.5 -75,-107.5 -74.9,-107.5 -74.8,-107.5 -74.7,-107.5 -74.6,-107.5 -74.5)) | POINT(-106.5 -75) | false | false |