{"dp_type": "Project", "free_text": "Environmental Modeling"}
[{"awards": "2023244 Stewart, Andrew; 2023259 Thompson, Andrew; 2023303 Purkey, Sarah", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Code for reproducing the ocean-biogeochemical experiments in Sun et al. (2024); Hydrographic data collected from the Bellingshausen and Amundsen seas (NCEI Accession 0210639); Ocean CFC reconstructed data product", "datasets": [{"dataset_uid": "200427", "doi": "10.6084/m9.figshare.26787751", "keywords": null, "people": null, "repository": "Figshare (open repository)", "science_program": null, "title": "Code for reproducing the ocean-biogeochemical experiments in Sun et al. (2024)", "url": "https://doi.org/10.6084/m9.figshare.26787751"}, {"dataset_uid": "200428", "doi": "", "keywords": null, "people": null, "repository": "NOAA\u0027s National Centers for Environmental Information (NCEI)", "science_program": null, "title": "Hydrographic data collected from the Bellingshausen and Amundsen seas (NCEI Accession 0210639)", "url": "https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0210639"}, {"dataset_uid": "601752", "doi": "10.15784/601752", "keywords": "Antarctica; CFCs; GLODAP; Ocean Model; Ocean Ventilation; Southern Ocean", "people": "Cimoli, Laura; Gebbie, Jack; Purkey, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Ocean CFC reconstructed data product", "url": "https://www.usap-dc.org/view/dataset/601752"}], "date_created": "Thu, 01 Jul 2021 00:00:00 GMT", "description": "Part 1: Because of the manner in which it is formed at high latitudes in the Antarctic ice, Antarctic Bottom Water (AABW) is the coldest, saltiest and densest water on the planet. The global circulation of is often quanti\ufb01ed via the transport in a two-dimensional, latitude/depth coordinate space. However, AABW formation, northward \ufb02ow and distribution between the Atlantic, Indian and Paci\ufb01c basins are fundamentally three-dimensional processes. AABW is formed in a handful of distinct sites around the Antarctic coast, notably the southern Weddell Sea, the western Ross Sea, along the Ad\u00b4elie coast, and in Prydz Bay. AABW is one of the key components of the global ocean overturning circulation, and plays a critical role in regulating Earth\u0027s climate, on multi-decadal-to-millennial time scales. Part 2: Mapping of AABW transport to northern basins is not well constrained, with conflicting conclusions drawn in previous studies. At one extreme the ACC has been suggested to be a \u201cconduit\" that simply allows each variety of AABW to transit directly northward. At the other extreme, it has been suggested that the ACC \u201cblends\" all shelf AABW sources together before they reach the northern basins. To close the gap in understanding, this collaborative project draws on three complementary analytical tools: process-oriented modeling of AABW export across the ACC, a high-resolution global ocean model, and an observationally-constrained estimate of the global circulation. The proposed identification and mechanistic understanding of AABW pathways. This project will also advance the careers of three postdoctoral researchers and two early-career faculty members, and will continue collaborative links between the PI and a foreign investigator. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e DATA ANALYSIS \u003e ENVIRONMENTAL MODELING \u003e COMPUTER", "is_usap_dc": true, "keywords": "AMD; MODELS; USAP-DC; WATER MASSES; Southern Ocean; Amd/Us; OCEAN CURRENTS; COMPUTERS; Antarctic Circumpolar Current; USA/NSF", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Stewart, Andrew; Thompson, Andrew; Purkey, Sarah", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e MODELS \u003e MODELS", "repo": "Figshare (open repository)", "repositories": "Figshare (open repository); NOAA\u0027s National Centers for Environmental Information (NCEI); USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: The Antarctic Circumpolar Current: A Conduit or Blender of Antarctic Bottom Waters?", "uid": "p0010220", "west": -180.0}, {"awards": "1443347 Condron, Alan; 1443394 Pollard, David", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Ice Sheet simulations for role of freshwater in future warming scenarios; Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming; Simulated changes in Southern Ocean salinity", "datasets": [{"dataset_uid": "601449", "doi": "10.15784/601449", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meltwater", "people": "Condron, Alan", "repository": "USAP-DC", "science_program": null, "title": "Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming", "url": "https://www.usap-dc.org/view/dataset/601449"}, {"dataset_uid": "601154", "doi": "10.15784/601154 ", "keywords": "Antarctic; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet; Ice Sheet Model; Meltwater; Model Data; Modeling; Model Output", "people": "Pollard, David", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Ice Sheet simulations for role of freshwater in future warming scenarios", "url": "https://www.usap-dc.org/view/dataset/601154"}, {"dataset_uid": "601442", "doi": "10.15784/601442", "keywords": "Antarctica; Computer Model; Freshwater; Glaciers/ice Sheet; Glaciers/Ice Sheet; Model Data; Ocean Model; Oceans; Salinity", "people": "Condron, Alan", "repository": "USAP-DC", "science_program": null, "title": "Simulated changes in Southern Ocean salinity", "url": "https://www.usap-dc.org/view/dataset/601442"}], "date_created": "Mon, 04 Feb 2019 00:00:00 GMT", "description": "There is compelling historical evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse. Recent observations, compared to observations made 20-30 years before, indicate that both ice shelves (thick ice with ocean below) and land ice (thick ice with land below), are now melting at a much faster rate. Some numerical models suggest that significant ice retreat may begin within many of our lifetimes, starting with the abrupt collapse of Pine Island and Thwaites Glaciers in the next 50 years. This may be followed by retreat of much of the WAIS and then the collapse of parts of the East Antarctic ice sheet (EAIS). This research project will assess the extent to which global ocean circulation and climate will be impacted if enormous volumes of fresh water and ice flow into the Southern Ocean. It will establish whether a rapid collapse of WAIS in the near-future poses any significant threat to the stability of modern-day climate and human society. This is a topic that has so far received little attention as most prior research has focused on the response of climate to melting the Greenland ice sheet. Yet model simulations predict that the volumes of fresh water and ice released from Antarctica in the next few centuries could be up at least ten-times larger than from Greenland. The Intellectual Merit of this project stems from its ability to establish a link between the physical Antarctic system (ice sheet dynamics, fresh water discharge and iceberg calving) and global climate. The PIs (Principal Investigators) will assess the sensitivity of ocean circulation and climate to increased ice sheet melt using a combination of ocean, iceberg, ice sheet and climate models. Results from this study will help identify areas of the ice sheet that are vulnerable to collapse and also regions of the ocean where a significant freshening will have a considerable impact on climate, and serve to guide the deployment of an observational monitoring system capable of warning us when ice and fresh water discharge start to approach levels capable of disrupting ocean circulation and global climate. This project will support and train two graduate students, and each PI will be involved with local primary and secondary schools, making presentations, mentoring science fair projects, and contributing to curriculum development. A novel, web-based, interactive, cryosphere learning tool will be developed to help make school children more aware of the importance of the Polar Regions in global climate, and this software will be introduced to science teachers at a half day workshop organized by the UMass STEM Education Institute. Recent numerical simulations using a continental ice sheet/shelf model show the potential for more rapid and greater Antarctic ice sheet retreat in the next 50-300 years (under the full range of IPCC RCP (Intergovernmental Panel on Climate Change, Representative Concentration Pathways) future warming scenarios) than previously projected. Exactly how the release of enormous volumes of ice and fresh water to the Southern Ocean will impact global ocean circulation and climate has yet to be accurately assessed. This is in part because previous model simulations were too coarse to accurately resolve narrow coastal boundary currents, shelf breaks, fronts, and mesoscale eddies that are all very important for realistically simulating fresh water transport in the ocean. In this award, future projections of fresh water discharge and iceberg calving from Antarctic will be used to force a high resolution eddy-resolving ocean model (MITgcm) coupled to a new iceberg module and a fully-coupled global climate model (CCSM4). High resolution ocean/iceberg simulations will determine the role of mesoscale eddies in freshwater transport and give new insight into how fresh water is advected to far-field locations, including deep water formation sites in the North Atlantic. These simulations will provide detailed information about subsurface temperatures and changes in ocean circulation close to the ice front and grounding line. An accompanying set of fully coupled climate model simulations (NCAR CCSM4) will identify multidecadal-to-centennial changes in the climate system triggered by increased high-latitude Southern Ocean freshwater forcing. Particular attention will be given to changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC), wind stress, sea ice formation, and global temperatures. In doing so, this project will more accurately determine whether abrupt and potentially catastrophic changes in global climate are likely to be triggered by changes in the Antarctic system in the near-future.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e DATA ANALYSIS \u003e ENVIRONMENTAL MODELING \u003e COMPUTER", "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; AMD; MODELS; Amd/Us; Antarctica; GLACIERS/ICE SHEETS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Pollard, David; Condron, Alan; DeConto, Robert", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet", "uid": "p0010007", "west": -180.0}, {"awards": "1043018 Pollard, David; 1043485 Curtice, Josh; 1043517 Clark, Peter", "bounds_geometry": "POLYGON((163.5 -77.57,163.685 -77.57,163.87 -77.57,164.055 -77.57,164.24 -77.57,164.425 -77.57,164.61 -77.57,164.795 -77.57,164.98 -77.57,165.165 -77.57,165.35 -77.57,165.35 -77.645,165.35 -77.72,165.35 -77.795,165.35 -77.87,165.35 -77.945,165.35 -78.02,165.35 -78.095,165.35 -78.17,165.35 -78.245,165.35 -78.32,165.165 -78.32,164.98 -78.32,164.795 -78.32,164.61 -78.32,164.425 -78.32,164.24 -78.32,164.055 -78.32,163.87 -78.32,163.685 -78.32,163.5 -78.32,163.5 -78.245,163.5 -78.17,163.5 -78.095,163.5 -78.02,163.5 -77.945,163.5 -77.87,163.5 -77.795,163.5 -77.72,163.5 -77.645,163.5 -77.57))", "dataset_titles": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea; Ice Sheet Model Output, West Antarctic Ice Sheet Deglaciation", "datasets": [{"dataset_uid": "600123", "doi": "10.15784/600123", "keywords": "Antarctica; Cosmogenic Dating; Ross Sea; Sample/collection Description; Sample/Collection Description; Southern Ocean; WAIS", "people": "Kurz, Mark D.; Curtice, Josh", "repository": "USAP-DC", "science_program": null, "title": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "url": "https://www.usap-dc.org/view/dataset/600123"}, {"dataset_uid": "609639", "doi": "10.7265/N5NC5Z53", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Model", "people": "Pollard, David", "repository": "USAP-DC", "science_program": null, "title": "Ice Sheet Model Output, West Antarctic Ice Sheet Deglaciation", "url": "https://www.usap-dc.org/view/dataset/609639"}], "date_created": "Sat, 15 Oct 2016 00:00:00 GMT", "description": "1043517/Clark This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.", "east": 165.35, "geometry": "POINT(164.425 -77.945)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e DATA ANALYSIS \u003e ENVIRONMENTAL MODELING \u003e COMPUTER", "is_usap_dc": true, "keywords": "Ocean Depth; Not provided; Bed Elevation; Model Output; Sea Level Rise; Surface Accumulation Rate; Surface Melt Rate; Ocean Melt Rate; Total Ice Volume; Modeling; Calving Rate; Total Ice Area; LABORATORY", "locations": null, "north": -77.57, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Pollard, David; Curtice, Josh; Clark, Peter; Kurz, Mark D.", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.32, "title": "Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", "uid": "p0000194", "west": 163.5}, {"awards": "0632346 Tulaczyk, Slawek; 0632161 Johnson, Jesse; 0632168 Hulbe, Christina; 0632325 Seals, Cheryl", "bounds_geometry": "POLYGON((-180 -50.05,-144 -50.05,-108 -50.05,-72 -50.05,-36 -50.05,0 -50.05,36 -50.05,72 -50.05,108 -50.05,144 -50.05,180 -50.05,180 -54.045,180 -58.04,180 -62.035,180 -66.03,180 -70.025,180 -74.02,180 -78.015,180 -82.01,180 -86.005,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -86.005,-180 -82.01,-180 -78.015,-180 -74.02,-180 -70.025,-180 -66.03,-180 -62.035,-180 -58.04,-180 -54.045,-180 -50.05))", "dataset_titles": "Singular Value Decomposition Analysis of Ice Sheet Model Output Fields; Wiki containing the data and provenance.", "datasets": [{"dataset_uid": "609396", "doi": "10.7265/N5K64G1S", "keywords": "Antarctica; Community Ice Sheet Model; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "people": "Daescu, Dacian N.; Hulbe, Christina", "repository": "USAP-DC", "science_program": null, "title": "Singular Value Decomposition Analysis of Ice Sheet Model Output Fields", "url": "https://www.usap-dc.org/view/dataset/609396"}, {"dataset_uid": "001499", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Wiki containing the data and provenance.", "url": "http://websrv.cs.umt.edu/isis/index.php/Present_Day_Antarctica"}], "date_created": "Fri, 02 Jul 2010 00:00:00 GMT", "description": "Johnson/0632161\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to create a \"Community Ice Sheet Model (CISM)\". The intellectual merit of the proposed activity is that the development of such a model will aid in advancing the science of ice sheet modeling. The model will be developed with the goal of assuring that CISM is accurate, robust, well documented, intuitive, and computationally efficient. The development process will stress principles of software design. Two complementary efforts will occur. One will involve novel predictive modeling experiments on the Amundsen Sea Embayment region of Antarctica with the goal of understanding how interactions between basal processes and ice sheet dynamics can result in abrupt reconfigurations of ice-sheets, and how those reconfigurations impact other Earth systems. New modeling physics are to include the higher order stress terms that allow proper resolution of ice stream and shelf features, and the associated numerical methods that allow higher and lower order physics to be coexist in a single model. The broader impacts of the proposed activity involve education and public outreach. The model will be elevated to a high standard in terms of user interface and design, which will allow for the production of inquiry based, polar and climate science curriculum for K-12 education. The development of a CISM itself would represent a sea change in the way that glaciological research is conducted, eliminating numerous barriers to progress in polar research such as duplicated efforts, lack of transparency in publication, lack of a cryospheric model for others to link to and reference, and a common starting point from which to begin investigation. As the appropriate interfaces are developed, a curriculum to utilize CISM in education will be developed. Students participating in this grant will be required to be involved in public outreach through various mechanisms including local and state science fairs. The model will also serve as a basis for educating \"a new generation\" of climate scientists. This project is relevant to the International Polar Year (IPY) as the research team is multi-institutional and multi-disciplinary, will bring new groups and new specialties into the realm of polar research and is part of a larger group of proposals whose research focuses on research in the Amundsen Sea Embayment Plan region of Antarctica. The project is international in scope and the nature of software development is quite international, with firm commitments from the United Kingdom and Belgium to collaborate. In addition there will be an international external advisory board that will be used to guide development, and serve as a link to other IPY activities.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MODELS; International Polar Year; Derived Basal Temperature Evolution; Ice Sheet; Community Ice Sheet Model; Ice Sheet Model; LABORATORY; Amundsen Sea; Eismint; Modeling; Basal Temperature; Numerical Model; Antarctic Ice Sheet; Environmental Modeling; IPY; Antarctica; Model; Not provided; Ice Dynamic", "locations": "Antarctic Ice Sheet; Antarctica; Amundsen Sea", "north": -50.05, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Hulbe, Christina; Seals, Cheryl; Johnson, Jesse; Daescu, Dacian N.", "platforms": "Not provided; OTHER \u003e MODELS \u003e MODELS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "PI website; USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: IPY, The Next Generation: A Community Ice Sheet Model for Scientists and Educators With Demonstration Experiments in Amundsen Sea Embayment Region", "uid": "p0000756", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: The Antarctic Circumpolar Current: A Conduit or Blender of Antarctic Bottom Waters?
|
2023244 2023259 2023303 |
2021-07-01 | Stewart, Andrew; Thompson, Andrew; Purkey, Sarah |
|
Part 1: Because of the manner in which it is formed at high latitudes in the Antarctic ice, Antarctic Bottom Water (AABW) is the coldest, saltiest and densest water on the planet. The global circulation of is often quantified via the transport in a two-dimensional, latitude/depth coordinate space. However, AABW formation, northward flow and distribution between the Atlantic, Indian and Pacific basins are fundamentally three-dimensional processes. AABW is formed in a handful of distinct sites around the Antarctic coast, notably the southern Weddell Sea, the western Ross Sea, along the Ad´elie coast, and in Prydz Bay. AABW is one of the key components of the global ocean overturning circulation, and plays a critical role in regulating Earth's climate, on multi-decadal-to-millennial time scales. Part 2: Mapping of AABW transport to northern basins is not well constrained, with conflicting conclusions drawn in previous studies. At one extreme the ACC has been suggested to be a “conduit" that simply allows each variety of AABW to transit directly northward. At the other extreme, it has been suggested that the ACC “blends" all shelf AABW sources together before they reach the northern basins. To close the gap in understanding, this collaborative project draws on three complementary analytical tools: process-oriented modeling of AABW export across the ACC, a high-resolution global ocean model, and an observationally-constrained estimate of the global circulation. The proposed identification and mechanistic understanding of AABW pathways. This project will also advance the careers of three postdoctoral researchers and two early-career faculty members, and will continue collaborative links between the PI and a foreign investigator. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Collaborative Research: Assessing the Global Climate Response to Melting of the Antarctic Ice Sheet
|
1443347 1443394 |
2019-02-04 | Pollard, David; Condron, Alan; DeConto, Robert | There is compelling historical evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse. Recent observations, compared to observations made 20-30 years before, indicate that both ice shelves (thick ice with ocean below) and land ice (thick ice with land below), are now melting at a much faster rate. Some numerical models suggest that significant ice retreat may begin within many of our lifetimes, starting with the abrupt collapse of Pine Island and Thwaites Glaciers in the next 50 years. This may be followed by retreat of much of the WAIS and then the collapse of parts of the East Antarctic ice sheet (EAIS). This research project will assess the extent to which global ocean circulation and climate will be impacted if enormous volumes of fresh water and ice flow into the Southern Ocean. It will establish whether a rapid collapse of WAIS in the near-future poses any significant threat to the stability of modern-day climate and human society. This is a topic that has so far received little attention as most prior research has focused on the response of climate to melting the Greenland ice sheet. Yet model simulations predict that the volumes of fresh water and ice released from Antarctica in the next few centuries could be up at least ten-times larger than from Greenland. The Intellectual Merit of this project stems from its ability to establish a link between the physical Antarctic system (ice sheet dynamics, fresh water discharge and iceberg calving) and global climate. The PIs (Principal Investigators) will assess the sensitivity of ocean circulation and climate to increased ice sheet melt using a combination of ocean, iceberg, ice sheet and climate models. Results from this study will help identify areas of the ice sheet that are vulnerable to collapse and also regions of the ocean where a significant freshening will have a considerable impact on climate, and serve to guide the deployment of an observational monitoring system capable of warning us when ice and fresh water discharge start to approach levels capable of disrupting ocean circulation and global climate. This project will support and train two graduate students, and each PI will be involved with local primary and secondary schools, making presentations, mentoring science fair projects, and contributing to curriculum development. A novel, web-based, interactive, cryosphere learning tool will be developed to help make school children more aware of the importance of the Polar Regions in global climate, and this software will be introduced to science teachers at a half day workshop organized by the UMass STEM Education Institute. Recent numerical simulations using a continental ice sheet/shelf model show the potential for more rapid and greater Antarctic ice sheet retreat in the next 50-300 years (under the full range of IPCC RCP (Intergovernmental Panel on Climate Change, Representative Concentration Pathways) future warming scenarios) than previously projected. Exactly how the release of enormous volumes of ice and fresh water to the Southern Ocean will impact global ocean circulation and climate has yet to be accurately assessed. This is in part because previous model simulations were too coarse to accurately resolve narrow coastal boundary currents, shelf breaks, fronts, and mesoscale eddies that are all very important for realistically simulating fresh water transport in the ocean. In this award, future projections of fresh water discharge and iceberg calving from Antarctic will be used to force a high resolution eddy-resolving ocean model (MITgcm) coupled to a new iceberg module and a fully-coupled global climate model (CCSM4). High resolution ocean/iceberg simulations will determine the role of mesoscale eddies in freshwater transport and give new insight into how fresh water is advected to far-field locations, including deep water formation sites in the North Atlantic. These simulations will provide detailed information about subsurface temperatures and changes in ocean circulation close to the ice front and grounding line. An accompanying set of fully coupled climate model simulations (NCAR CCSM4) will identify multidecadal-to-centennial changes in the climate system triggered by increased high-latitude Southern Ocean freshwater forcing. Particular attention will be given to changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC), wind stress, sea ice formation, and global temperatures. In doing so, this project will more accurately determine whether abrupt and potentially catastrophic changes in global climate are likely to be triggered by changes in the Antarctic system in the near-future. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||||
Collaborative Research: A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea
|
1043018 1043485 1043517 |
2016-10-15 | Pollard, David; Curtice, Josh; Clark, Peter; Kurz, Mark D. |
|
1043517/Clark This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation. | POLYGON((163.5 -77.57,163.685 -77.57,163.87 -77.57,164.055 -77.57,164.24 -77.57,164.425 -77.57,164.61 -77.57,164.795 -77.57,164.98 -77.57,165.165 -77.57,165.35 -77.57,165.35 -77.645,165.35 -77.72,165.35 -77.795,165.35 -77.87,165.35 -77.945,165.35 -78.02,165.35 -78.095,165.35 -78.17,165.35 -78.245,165.35 -78.32,165.165 -78.32,164.98 -78.32,164.795 -78.32,164.61 -78.32,164.425 -78.32,164.24 -78.32,164.055 -78.32,163.87 -78.32,163.685 -78.32,163.5 -78.32,163.5 -78.245,163.5 -78.17,163.5 -78.095,163.5 -78.02,163.5 -77.945,163.5 -77.87,163.5 -77.795,163.5 -77.72,163.5 -77.645,163.5 -77.57)) | POINT(164.425 -77.945) | false | false | |||||||
Collaborative Research: IPY, The Next Generation: A Community Ice Sheet Model for Scientists and Educators With Demonstration Experiments in Amundsen Sea Embayment Region
|
0632346 0632161 0632168 0632325 |
2010-07-02 | Hulbe, Christina; Seals, Cheryl; Johnson, Jesse; Daescu, Dacian N. |
|
Johnson/0632161<br/><br/>This award supports a project to create a "Community Ice Sheet Model (CISM)". The intellectual merit of the proposed activity is that the development of such a model will aid in advancing the science of ice sheet modeling. The model will be developed with the goal of assuring that CISM is accurate, robust, well documented, intuitive, and computationally efficient. The development process will stress principles of software design. Two complementary efforts will occur. One will involve novel predictive modeling experiments on the Amundsen Sea Embayment region of Antarctica with the goal of understanding how interactions between basal processes and ice sheet dynamics can result in abrupt reconfigurations of ice-sheets, and how those reconfigurations impact other Earth systems. New modeling physics are to include the higher order stress terms that allow proper resolution of ice stream and shelf features, and the associated numerical methods that allow higher and lower order physics to be coexist in a single model. The broader impacts of the proposed activity involve education and public outreach. The model will be elevated to a high standard in terms of user interface and design, which will allow for the production of inquiry based, polar and climate science curriculum for K-12 education. The development of a CISM itself would represent a sea change in the way that glaciological research is conducted, eliminating numerous barriers to progress in polar research such as duplicated efforts, lack of transparency in publication, lack of a cryospheric model for others to link to and reference, and a common starting point from which to begin investigation. As the appropriate interfaces are developed, a curriculum to utilize CISM in education will be developed. Students participating in this grant will be required to be involved in public outreach through various mechanisms including local and state science fairs. The model will also serve as a basis for educating "a new generation" of climate scientists. This project is relevant to the International Polar Year (IPY) as the research team is multi-institutional and multi-disciplinary, will bring new groups and new specialties into the realm of polar research and is part of a larger group of proposals whose research focuses on research in the Amundsen Sea Embayment Plan region of Antarctica. The project is international in scope and the nature of software development is quite international, with firm commitments from the United Kingdom and Belgium to collaborate. In addition there will be an international external advisory board that will be used to guide development, and serve as a link to other IPY activities. | POLYGON((-180 -50.05,-144 -50.05,-108 -50.05,-72 -50.05,-36 -50.05,0 -50.05,36 -50.05,72 -50.05,108 -50.05,144 -50.05,180 -50.05,180 -54.045,180 -58.04,180 -62.035,180 -66.03,180 -70.025,180 -74.02,180 -78.015,180 -82.01,180 -86.005,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -86.005,-180 -82.01,-180 -78.015,-180 -74.02,-180 -70.025,-180 -66.03,-180 -62.035,-180 -58.04,-180 -54.045,-180 -50.05)) | POINT(0 -89.999) | false | false |