{"dp_type": "Project", "free_text": "Chlorine-36"}
[{"awards": "0126343 Nishiizumi, Kunihiko", "bounds_geometry": "POINT(-148.812 -81.6588)", "dataset_titles": "Cosmogenic Radionuclides in the Siple Dome A Ice Core", "datasets": [{"dataset_uid": "609307", "doi": "10.7265/N5XK8CGS", "keywords": "Antarctica; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Nishiizumi, Kunihiko; Finkel, R. C.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Cosmogenic Radionuclides in the Siple Dome A Ice Core", "url": "https://www.usap-dc.org/view/dataset/609307"}], "date_created": "Mon, 12 Jun 2006 00:00:00 GMT", "description": "This award supports a three-year renewal project to complete measurement of cosmogenic nuclides in the Siple Dome ice core as part of the West Antarctic ice core program. The investigators will continue to measure profiles of Beryllium-10 (half-life = 1.5x10 6 years) and Chlorine-36 (half-life = 3.0x10 5 years) in the entire ice core which spans the time period from the present to about 100 kyr. It will be particularly instructive to compare the Antarctic record with the detailed Arctic record that was measured by these investigators as part of the GISP2 project. This comparison will help separate global from local effects at the different drill sites. Cosmogenic radionuclides in polar ice cores have been used to study the long-term variations in several important geophysical variables, including solar activity, geomagnetic field strength, atmospheric circulation, snow accumulation rates, and others. The time series of nuclide concentrations resulting from this work will be applied to several problem areas: perfecting the ice core chronology, deducing the history of solar activity, deducing the history of variations in the geomagnetic field, and studying the possible role of solar variations on climate. Comparison of Beryllium-10 and Chlorine-36 profiles in different cores will allow us to improve the ice core chronology and directly compare ice cores from different regions of the globe. Additional comparison with the Carbon-14 record will allow correlation of the ice core paleoenvironment record to other, Carbon-14 dated, paleoclimate records.", "east": -148.812, "geometry": "POINT(-148.812 -81.6588)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Core Chemistry; Antarctica; Ice Core; Cosmogenic Radionuclides; Chlorine-36; GROUND STATIONS; Beryllium-10; Siple Dome; West Antarctica", "locations": "Antarctica; Siple Dome; West Antarctica", "north": -81.6588, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Finkel, R. C.; Nishiizumi, Kunihiko", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.6588, "title": "Cosmogenic Radionuclides in the Siple Dome Ice Core", "uid": "p0000358", "west": -148.812}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cosmogenic Radionuclides in the Siple Dome Ice Core
|
0126343 |
2006-06-12 | Finkel, R. C.; Nishiizumi, Kunihiko |
|
This award supports a three-year renewal project to complete measurement of cosmogenic nuclides in the Siple Dome ice core as part of the West Antarctic ice core program. The investigators will continue to measure profiles of Beryllium-10 (half-life = 1.5x10 6 years) and Chlorine-36 (half-life = 3.0x10 5 years) in the entire ice core which spans the time period from the present to about 100 kyr. It will be particularly instructive to compare the Antarctic record with the detailed Arctic record that was measured by these investigators as part of the GISP2 project. This comparison will help separate global from local effects at the different drill sites. Cosmogenic radionuclides in polar ice cores have been used to study the long-term variations in several important geophysical variables, including solar activity, geomagnetic field strength, atmospheric circulation, snow accumulation rates, and others. The time series of nuclide concentrations resulting from this work will be applied to several problem areas: perfecting the ice core chronology, deducing the history of solar activity, deducing the history of variations in the geomagnetic field, and studying the possible role of solar variations on climate. Comparison of Beryllium-10 and Chlorine-36 profiles in different cores will allow us to improve the ice core chronology and directly compare ice cores from different regions of the globe. Additional comparison with the Carbon-14 record will allow correlation of the ice core paleoenvironment record to other, Carbon-14 dated, paleoclimate records. | POINT(-148.812 -81.6588) | POINT(-148.812 -81.6588) | false | false |