{"dp_type": "Project", "free_text": "Albedo"}
[{"awards": "2035078 Giometto, Marco; 2034874 Salesky, Scott", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "1. A non-technical explanation of the project\u0027s broader significance and importance, that serves as a public justification for NSF funding. This part should be understandable to an educated reader who is not a scientist or engineer. Katabatic or drainage winds, carry high-density air from a higher elevation down a slope under the force of gravity. Although katabatic flows are ubiquitous in alpine and polar regions, a surface-layer similarity theory is currently lacking for these flows, undermining the accuracy of numerical weather and climate prediction models. This project is interdisciplinary, and will give graduate and undergraduate students valuable experience interacting with researchers outside their core discipline. Furthermore, this project will broaden participating in science through recruitment of students from under-represented groups at OU and CU through established programs. The Antarctic Ice Sheet drives many processes in the Earth system through its modulation of regional and global atmospheric and oceanic circulations, storage of fresh water, and effects on global albedo and climate. An understanding of the surface mass balance of the ice sheets is critical for predicting future sea level rise and for interpreting ice core records. Yet, the evolution of the ice sheets through snow deposition, erosion, and transport in katabatic winds (which are persistent across much of the Antarctic) remains poorly understood due to the lack of an overarching theoretical framework, scarcity of in situ observational datasets, and a lack of accurate numerical modeling tools. Advances in the fundamental understanding and modeling capabilities of katabatic transport processes are urgently needed in view of the future climatic and snowfall changes that are projected to occur within the Antarctic continent. This project will leverage the expertise of a multidisciplinary team of investigators (with backgrounds spanning cryospheric science, environmental fluid mechanics, and atmospheric science) to address these knowledge gaps. 2. A technical description of the project that states the problem to be studied, the goals and scope of the research, and the methods and approaches to be used. In many cases, the technical project description may be a modified version of the project summary submitted with the proposal. Using field observations and direct numerical simulations of katabatic flow, this project is expected--- for the first time---to lead to a surface-layer similarity theory for katabatic flows relating turbulent fluxes to mean vertical gradients. The similarity theory will be used to develop surface boundary conditions for large eddy simulations (LES), enabling the first accurate LES of katabatic flow. The numerical tools that the PIs will develop will allow them to investigate how the partitioning between snow redistribution, transport, and sublimation depends on the environmental parameters typically encountered in Antarctica (e.g. atmospheric stratification, surface sloping angles, and humidity profiles), and to develop simple models to infer snow transport based on satellite remote sensing and regional climate models This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "TURBULENCE; ATMOSPHERIC RADIATION; DATA COLLECTIONS; SNOW/ICE; SNOW; FIELD INVESTIGATION; AIR TEMPERATURE; HUMIDITY", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Salesky, Scott; Giometto, Marco; Das, Indrani", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e DATA COLLECTIONS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Research: Snow Transport in Katabatic Winds and Implications for the Antarctic Surface Mass Balance: Observations, Theory, and Numerical Modeling", "uid": "p0010433", "west": null}, {"awards": "1643436 Donohoe, Aaron", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Partionining of CERES planetary albedo between atmospheric and surface reflection", "datasets": [{"dataset_uid": "601579", "doi": "10.15784/601579", "keywords": "Antarctica; Southern Ocean", "people": "Donohoe, Aaron", "repository": "USAP-DC", "science_program": null, "title": "Partionining of CERES planetary albedo between atmospheric and surface reflection", "url": "https://www.usap-dc.org/view/dataset/601579"}], "date_created": "Fri, 10 Jun 2022 00:00:00 GMT", "description": "This project will use observations and coupled climate model simulations to examine the causes of sea ice variability. Sea ice in the Southern Ocean has increased in area over the observational record but researchers have yet to agree on the cause. Researchers suggests that changes in surface winds, upper-ocean freshening, or internal ocean/atmosphere variability could be the main driver for the increase in sea ice area. This project will determine how much of the change in sea ice area from year to year is due to oceanic, atmospheric, and radiative processes. Reconciling the observation-based understanding with model representations of sea ice variability will improve confidence in projections of future changes in Southern Ocean sea ice. The goal of this proposal is to improve our understanding of the processes that drive Southern Ocean sea ice year-to-year variability and long term trends. This knowledge will provide insight into how Southern Ocean sea ice responded to greenhouse gas and ozone forcing in the past and how it will respond in the future. The energy budget of the coupled cryosphere/ocean/atmosphere climate system will be used as a framework to disentangle drivers and responses during sea ice loss events. The technique consists of: (i) calculating the coupled energy budget of the climate system at the monthly timescale, (ii) isolating the radiative impact of sea ice variability from the radiative impact of cloud variability in the observed satellite radiation record and (iii) analyzing the vertical structure of atmospheric energy transport to determine the vertical profile of energy transport into the atmospheric column. This framework will allow the investigators to distinguish whether ice loss events are triggered by oceanic processes, atmospheric dynamics, or radiative processes. Preliminary results show that a diversity of mechanisms can drive Southern Ocean sea ice variability in coupled climate models whereas observed sea ice variability appears to be dominated by atmospheric dynamics. The exploration of biases between models and observations in both the mean state and in specific processes will yield more accurate projections of the future of sea ice in the Southern Ocean.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AMD; Amd/Us; SEA ICE; United States Of America; COMPUTERS; ATMOSPHERIC WINDS; ATMOSPHERIC RADIATION; NSF/USA", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Donohoe, Aaron; Schweiger, Axel", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "What Processes Drive Southern Ocean Sea Ice Variability and Trends? Insights from the Energy Budget of the Coupled Cryosphere-ocean-atmosphere System", "uid": "p0010336", "west": -180.0}, {"awards": "1932876 Ball, Becky", "bounds_geometry": "POLYGON((-59.666116 -62.15,-59.5128377 -62.15,-59.3595594 -62.15,-59.2062811 -62.15,-59.0530028 -62.15,-58.8997245 -62.15,-58.7464462 -62.15,-58.5931679 -62.15,-58.4398896 -62.15,-58.2866113 -62.15,-58.133333 -62.15,-58.133333 -62.1731502,-58.133333 -62.1963004,-58.133333 -62.2194506,-58.133333 -62.2426008,-58.133333 -62.265751,-58.133333 -62.2889012,-58.133333 -62.3120514,-58.133333 -62.3352016,-58.133333 -62.3583518,-58.133333 -62.381502,-58.2866113 -62.381502,-58.4398896 -62.381502,-58.5931679 -62.381502,-58.7464462 -62.381502,-58.8997245 -62.381502,-59.0530028 -62.381502,-59.2062811 -62.381502,-59.3595594 -62.381502,-59.5128377 -62.381502,-59.666116 -62.381502,-59.666116 -62.3583518,-59.666116 -62.3352016,-59.666116 -62.3120514,-59.666116 -62.2889012,-59.666116 -62.265751,-59.666116 -62.2426008,-59.666116 -62.2194506,-59.666116 -62.1963004,-59.666116 -62.1731502,-59.666116 -62.15))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 14 Apr 2022 00:00:00 GMT", "description": "Part I: Non-technical summary The Antarctic Peninsula warmed very rapidly in the late part of the 20th century, much faster than the global average, and this warming is predicted to resume and continue over the rest of the 21st century. One consequence of this rapid warming is the melting and subsequent retreat of glaciers, leading to an increase in newly-exposed land on the Peninsula that was previously covered with ice. Once new terrain is exposed, the process of ecological succession begins, with the arrival of early-colonizing plants, such as moss and lichens, and soil organisms - a process commonly referred to as the \u201cgreening\u201d of Antarctica. Early stages of succession will be an increasingly common feature on the Antarctic Peninsula, but the mechanisms by which they occur on the Antarctic continent is not well understood. Once the plants have established on the newly-exposed soil, they can change many important properties, such as water dynamics, nutrient recycling, soil development, and habitat for microscopic organisms, which will ultimately determine the structure and functioning of the future ecosystem as it develops. These relationships between vegetation, soil, and the associated microorganisms, referred to as \u201cplant-soil\u201d interactions, are something we know virtually nothing about. This project will be the first to make a comprehensive study of how the type of colonizing plant, and the expansion of those plants from climate change, will influence terrestrial ecosystems in Antarctica. Understanding these processes is critical to understanding how the greening Antarctica is occurring and how soil communities and processes are influenced by these expanding plant communities. Through this work the research team, will also be intensively training undergraduate and graduate students, including training of students from underrepresented groups and collaborative training of students from Chile and the US. Additionally, the research groups will continue their focus on scientific outreach with K-12 schools and the general public to expand awareness of the effects of climate change in Antarctica. Part II: Technical summary In this study, the researchers will use surveys across succession sites along the Antarctic Peninsula and Scotia Arc as well as a manipulative field experiment at glacier succession sites to test how species-specific plant functional traits impact soil properties and associated microbial and invertebrate communities in a greening Antarctica. In doing so, they will pursue three integrated aims to understand how Antarctic plant functional traits alter their soil environment and soil communities during succession after glacial retreat. AIM 1) Characterize six fundamental plant functional traits (thermal conductivity, water holding capacity, albedo, decomposability, tissue nutrient content, and secondary chemistry) among diverse Antarctica flora; AIM 2) Measure the relative effects of fundamental plant functional traits on soil physical properties and soil biogeochemistry across glacial succession gradients in Antarctica; and AIM 3) Measure the relative effects of fundamental plant functional traits on soil microbial and invertebrate communities across glacial succession gradients in Antarctica. They will explore how early-colonizing plants, especially mosses and lichens, alter soil physical, biogeochemical, and biological components, potentially impacting later patterns of succession. The researhcers will use intensive surveys of plant-soil interactions across succession sites and a manipulative transplant experiment in the South Shetland Islands, Antarctica to address their aims. The investigators will collect data on plant functional traits and their effects on soil physical properties, biogeochemistry, biotic abundance, and microbial metagenomics. The data collected will be the first comprehensive measures of the relative importance of plant functional types during glacial retreat and vegetative expansion from climate change in Antarctica, aiding our understanding of how plant functional group diversity and abundance are changing in a greening Antarctica. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -58.133333, "geometry": "POINT(-58.8997245 -62.265751)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; FIELD SURVEYS; ECOLOGICAL DYNAMICS; USA/NSF; SOIL CHEMISTRY; 25 De Mayo/King George Island; Antarctic Peninsula; PLANTS; Amd/Us; FUNGI; ANIMALS/INVERTEBRATES; USAP-DC; TERRESTRIAL ECOSYSTEMS; BACTERIA/ARCHAEA", "locations": "25 De Mayo/King George Island; Antarctic Peninsula", "north": -62.15, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ball, Becky", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -62.381502, "title": "Collaborative Research: Exploring the Functional Role of Antarctic Plants during Terrestrial Succession", "uid": "p0010315", "west": -59.666116}, {"awards": "2046240 Khan, Alia", "bounds_geometry": "POLYGON((-75 -62,-73.5 -62,-72 -62,-70.5 -62,-69 -62,-67.5 -62,-66 -62,-64.5 -62,-63 -62,-61.5 -62,-60 -62,-60 -62.85,-60 -63.7,-60 -64.55,-60 -65.4,-60 -66.25,-60 -67.1,-60 -67.95,-60 -68.8,-60 -69.65,-60 -70.5,-61.5 -70.5,-63 -70.5,-64.5 -70.5,-66 -70.5,-67.5 -70.5,-69 -70.5,-70.5 -70.5,-72 -70.5,-73.5 -70.5,-75 -70.5,-75 -69.65,-75 -68.8,-75 -67.95,-75 -67.1,-75 -66.25,-75 -65.4,-75 -64.55,-75 -63.7,-75 -62.85,-75 -62))", "dataset_titles": null, "datasets": null, "date_created": "Fri, 10 Sep 2021 00:00:00 GMT", "description": "________________________________________________________________________________________________ Part I: Non-technical Summary The Antarctic Peninsula is one of the most rapidly warming regions on the planet. This 5-yr time-series program will build on an ongoing international collaboration with scientists from the Chilean Antarctic Program to evaluate the role of temperature, light absorbing particles, snow-algae growth, and their radiative forcing effects on snow and ice melt in the Western Antarctic Peninsula. There is strong evidence that these effects may be intensifying due to a warming climate. Rising temperatures can increase the growth rate of coastal snow algae as well as enhance the input of particles from sources such as the long-range transport of black carbon to the Antarctic continent from intensifying Southern Hemisphere wildfire seasons. Particle and algae feedbacks can have immediate local impacts on snow melt and long-term regional impacts on climate because reduced snow cover alters how the Antarctic continent interacts with the rest of the global climate. A variety of ground-based and remote sensing data collected across multiple spatial scales will be used. Ground measurements will be compared to satellite imagery to develop novel computer algorithms to map ice algal bloom effects under changing climates. The project is expected to fundamentally advance knowledge of the spatial and temporal snow algae growing season, which is needed to quantify impacts on regional snow and ice melt. The program also has a strong partnership with the International Association of Antarctic Tour Operators to involve cruise passengers as citizen scientists for sample collection. Antarctic research results will be integrated into undergraduate curricula and research opportunities through studies to LAPs and snow algae in the Pacific Northwest. The PI will recruit and train a diverse pool of students in cryosphere climate related research methods on Mt. Baker in Western Washington. Trained undergraduate will then serve as instructors for a local Snow School that takes middle school students to Mt. Baker to learn about snow science. Resulting datasets from Antarctica and Mt. Baker will be used in University classes to explore regional effects of climate change. Along with enhancing cryosphere-oriented place-based undergraduate field courses in the Pacific Northwest, the PI will recruit and train a diverse pool of undergraduate students to serve as instructors for the Mt. Baker Snow School program. This award will advance our understanding of cryosphere-climate feedbacks, which are likely changing and will continue to evolve in a warming world, while also increasing under-represented student engagement in the polar geosciences. Part 2: Technical Summary Rapid and persistent climate warming in the Western Antarctic Peninsula is likely resulting in intensified snow-algae growth and an extended bloom season in coastal areas. Similarly, deposition of light absorbing particles (LAPs) onto Antarctica cryosphere surfaces, such as black carbon from intensifying Southern Hemisphere wildfire seasons, and dust from the expansion of ice-free regions in the Antarctic Peninsula, may be increasing. The presence of snow algae blooms and LAPs enhance the absorption of solar radiation by snow and ice surfaces. This positive feedback creates a measurable radiative forcing, which can have immediate local and long-term regional impacts on albedo, snow melt and downstream ecosystems. This project will investigate the spatial and temporal distribution of snow algae, black carbon and dust across the Western Antarctica Peninsula region, their response to climate warming, and their role in regional snow and ice melt. Data will be collected across multiple spatial scales from in situ field measurements and sample collection to imagery from ground-based photos and high resolution multi-spectral satellite sensors. Ground measurements will inform development and application of novel algorithms to map algal bloom extent through time using 0.5-3m spatial resolution multi-spectral satellite imagery. Results will be used to improve snow algae parameterization in a new version of the Snow Ice Aerosol Radiation model (SNICARv3) that includes bio-albedo feedbacks, eventually informing models of ice-free area expansion through incorporation of SNICARv3 in the Community Earth System Model. Citizen scientists will be mentored and engaged in the research through an active partnership with the International Association of Antarctic Tour Operators that frequently visits the region. The cruise ship association will facilitate sampling to develop a unique snow algae observing network to validate remote sensing algorithms that map snow algae with high-resolution multi-spectral satellite imagery from space. These time-series will inform instantaneous and interannual radiative forcing calculations to assess impacts of snow algae and LAPs on regional snow melt. Quantifying the spatio-temporal growing season of snow algae and impacts from black carbon and dust will increase our ability to model their impact on snow melt, regional climate warming and ice-free expansion in the Antarctic Peninsula region. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -60.0, "geometry": "POINT(-67.5 -66.25)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Antarctic Peninsula; Amd/Us; AMD; SNOW/ICE CHEMISTRY; USA/NSF; USAP-DC; SNOW", "locations": "Antarctic Peninsula", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Khan, Alia", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -70.5, "title": "CAREER: Coastal Antarctic Snow Algae and Light Absorbing Particles: Snowmelt, Climate and Ecosystem Impacts", "uid": "p0010263", "west": -75.0}, {"awards": "1043580 Reusch, David", "bounds_geometry": "POLYGON((-180 -47,-144 -47,-108 -47,-72 -47,-36 -47,0 -47,36 -47,72 -47,108 -47,144 -47,180 -47,180 -51.3,180 -55.6,180 -59.9,180 -64.2,180 -68.5,180 -72.8,180 -77.1,180 -81.4,180 -85.7,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.7,-180 -81.4,-180 -77.1,-180 -72.8,-180 -68.5,-180 -64.2,-180 -59.9,-180 -55.6,-180 -51.3,-180 -47))", "dataset_titles": "Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "datasets": [{"dataset_uid": "600166", "doi": "10.15784/600166", "keywords": "Antarctica; Atmosphere; Climate Model; Meteorology; Surface Melt", "people": "Reusch, David", "repository": "USAP-DC", "science_program": null, "title": "Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "url": "https://www.usap-dc.org/view/dataset/600166"}, {"dataset_uid": "600386", "doi": "10.15784/600386", "keywords": "Antarctica; Atmosphere; Atmospheric Model; Climate Model; Meteorology; Paleoclimate", "people": "Reusch, David", "repository": "USAP-DC", "science_program": null, "title": "Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "url": "https://www.usap-dc.org/view/dataset/600386"}], "date_created": "Thu, 28 Jul 2016 00:00:00 GMT", "description": "The presence of ice ponds from surface melting of glacial ice can be a significant threshold in assessing the stability of ice sheets, and their overall response to a warming climate. Snow melt has a much reduced albedo, leading to additional seasonal melting from warming insolation. Water run-off not only contributes to the mass loss of ice sheets directly, but meltwater reaching the glacial ice bed may lubricate faster flow of ice sheets towards the ocean. Surficial meltwater may also reach the grounding lines of glacial ice through the wedging open of existing crevasses. The occurrence and amount of meltwater refreeze has even been suggested as a paleo proxy of near-surface atmospheric temperature regimes. Using contemporary remote sensing (microwave) satellite assessment of surface melt occurrence and extent, the predictive skill of regional meteorological models and reanalyses (e.g. WRF, ERA-Interim) to describe the synoptic conditions favourable to surficial melt is to be investigated. Statistical approaches and pattern recognition techniques are argued to provide a context for projecting future ice sheet change. The previous Intergovernmental Panel on Climate Change (IPCC AR4) commented on our lack of understanding of ice-sheet mass balance processes in polar regions and the potential for sea-level change. The IPPC suggested that the forthcoming AR5 efforts highlight regional cryosphere modeling efforts, such as is proposed here.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -47.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Reusch, David; Lampkin, Derrick", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "uid": "p0000447", "west": -180.0}, {"awards": "1141275 Warren, Stephen", "bounds_geometry": null, "dataset_titles": "Antarctic field campaign data page", "datasets": [{"dataset_uid": "001399", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Antarctic field campaign data page", "url": "http://www.atmos.washington.edu/articles/EastAntarctica_SeaIceAlbedos_SnowImpurities/"}], "date_created": "Fri, 30 Jan 2015 00:00:00 GMT", "description": "The albedo, or reflection coefficient, is a measure of the diffuse reflectivity of an irradiated surface. With the sunlit atmosphere as a light source, and sea-ice as a diffuse reflecting surface, the albedo would be the fraction of incident light that is returned to the atmosphere. A perfect (white) reflecting surface would have an albedo of 1; a perfect (black) absorbing surface would have an albedo of 0. The albedo of sea-ice is needed to assess the solar energy budget of the marginal ice zone, to compute the partial solar bands in radiation budgets in general circulation and earth system models, and is also needed to interpret remote sensing imagery data products. Applications requiring albedos further into the near IR, out to 2500nm, are assumed or approximated. Modern spectral radiometers, such as will be used in this campaign on a Southern Ocean voyage from Hobart to Antarctica, can extend these measurements of albedo from 350 to 2500nm, allowing earlier estimates to be verified, or corrected. Surfaces to be encountered on this research cruise are expected to include open water, grease ice, nila ice, pancake ice, young grey ice, young grey-white ice, along with first year ice. The presence of variable amounts of snow on these surfaces is also of interest. Light absorbing impurities in the snow and ice, including black carbon and organic matter (brown carbon) are different from those found in Arctic Sea ice, the Antarctic being so remote from combustion sources. This may allow better understanding of the seasonal cycles, energy budgets and their recent trends in spatial extent and thickness. The project will also broaden the educational experiences of both US and Australian students participating in the measurement campaign", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Radiometers; Radiation Budgets; Sea Ice; Energy Budgets; Impurities; COMPUTERS; Albedo; Spectral; LABORATORY; Antarctica; Snow Temperature; Reflecting Surface; Snow Density; R/V AA", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Warren, Stephen; Zatko, Maria", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V AA", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": null, "title": "Spectral and Broadband Albedo of Antarctic Sea-ice Types", "uid": "p0000375", "west": null}, {"awards": "9526420 Taylor, Kendrick", "bounds_geometry": null, "dataset_titles": "Siple Dome Cores Electrical Measurement Data", "datasets": [{"dataset_uid": "609133", "doi": "10.7265/N5DR2SDN", "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Taylor, Kendrick C.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Siple Dome Cores Electrical Measurement Data", "url": "https://www.usap-dc.org/view/dataset/609133"}], "date_created": "Thu, 08 May 2003 00:00:00 GMT", "description": "This award is for support for the measurement of electrical and optical properties of the Siple Dome ice core. The electrical methods can be used to determine the concentration of the hydrogen ions and the concentration of a weighted sum of all ions. The electrical measurements can resolve features as small as 1 cm. The albedo of the core is also measured with a laser system that can resolve features as small as 0.5 cm. The high spatial resolution of these methods makes them ideal for resolving narrow features in the core, which can be missed in larger composite samples. The measurements will be particularly useful for assisting to date the core and to identify short duration features in the record, such as volcanic eruptions. These measurements will also provide useful information for assessing the temporal variability of Holocene accumulation rate and atmospheric circulation.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Densification; Siple Dome; Glaciology; Snow; Thermometry; WAISCORES; Electrical; Isotope; GROUND STATIONS; GROUND-BASED OBSERVATIONS; Not provided; Ice Sheet; Siple Coast; Ice Core; Siple; Antarctica", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Taylor, Kendrick C.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Electrical and Optical Measurements on the Siple Dome Ice Core", "uid": "p0000163", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Snow Transport in Katabatic Winds and Implications for the Antarctic Surface Mass Balance: Observations, Theory, and Numerical Modeling
|
2035078 2034874 |
2023-09-08 | Salesky, Scott; Giometto, Marco; Das, Indrani | No dataset link provided | 1. A non-technical explanation of the project's broader significance and importance, that serves as a public justification for NSF funding. This part should be understandable to an educated reader who is not a scientist or engineer. Katabatic or drainage winds, carry high-density air from a higher elevation down a slope under the force of gravity. Although katabatic flows are ubiquitous in alpine and polar regions, a surface-layer similarity theory is currently lacking for these flows, undermining the accuracy of numerical weather and climate prediction models. This project is interdisciplinary, and will give graduate and undergraduate students valuable experience interacting with researchers outside their core discipline. Furthermore, this project will broaden participating in science through recruitment of students from under-represented groups at OU and CU through established programs. The Antarctic Ice Sheet drives many processes in the Earth system through its modulation of regional and global atmospheric and oceanic circulations, storage of fresh water, and effects on global albedo and climate. An understanding of the surface mass balance of the ice sheets is critical for predicting future sea level rise and for interpreting ice core records. Yet, the evolution of the ice sheets through snow deposition, erosion, and transport in katabatic winds (which are persistent across much of the Antarctic) remains poorly understood due to the lack of an overarching theoretical framework, scarcity of in situ observational datasets, and a lack of accurate numerical modeling tools. Advances in the fundamental understanding and modeling capabilities of katabatic transport processes are urgently needed in view of the future climatic and snowfall changes that are projected to occur within the Antarctic continent. This project will leverage the expertise of a multidisciplinary team of investigators (with backgrounds spanning cryospheric science, environmental fluid mechanics, and atmospheric science) to address these knowledge gaps. 2. A technical description of the project that states the problem to be studied, the goals and scope of the research, and the methods and approaches to be used. In many cases, the technical project description may be a modified version of the project summary submitted with the proposal. Using field observations and direct numerical simulations of katabatic flow, this project is expected--- for the first time---to lead to a surface-layer similarity theory for katabatic flows relating turbulent fluxes to mean vertical gradients. The similarity theory will be used to develop surface boundary conditions for large eddy simulations (LES), enabling the first accurate LES of katabatic flow. The numerical tools that the PIs will develop will allow them to investigate how the partitioning between snow redistribution, transport, and sublimation depends on the environmental parameters typically encountered in Antarctica (e.g. atmospheric stratification, surface sloping angles, and humidity profiles), and to develop simple models to infer snow transport based on satellite remote sensing and regional climate models This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||
What Processes Drive Southern Ocean Sea Ice Variability and Trends? Insights from the Energy Budget of the Coupled Cryosphere-ocean-atmosphere System
|
1643436 |
2022-06-10 | Donohoe, Aaron; Schweiger, Axel |
|
This project will use observations and coupled climate model simulations to examine the causes of sea ice variability. Sea ice in the Southern Ocean has increased in area over the observational record but researchers have yet to agree on the cause. Researchers suggests that changes in surface winds, upper-ocean freshening, or internal ocean/atmosphere variability could be the main driver for the increase in sea ice area. This project will determine how much of the change in sea ice area from year to year is due to oceanic, atmospheric, and radiative processes. Reconciling the observation-based understanding with model representations of sea ice variability will improve confidence in projections of future changes in Southern Ocean sea ice. The goal of this proposal is to improve our understanding of the processes that drive Southern Ocean sea ice year-to-year variability and long term trends. This knowledge will provide insight into how Southern Ocean sea ice responded to greenhouse gas and ozone forcing in the past and how it will respond in the future. The energy budget of the coupled cryosphere/ocean/atmosphere climate system will be used as a framework to disentangle drivers and responses during sea ice loss events. The technique consists of: (i) calculating the coupled energy budget of the climate system at the monthly timescale, (ii) isolating the radiative impact of sea ice variability from the radiative impact of cloud variability in the observed satellite radiation record and (iii) analyzing the vertical structure of atmospheric energy transport to determine the vertical profile of energy transport into the atmospheric column. This framework will allow the investigators to distinguish whether ice loss events are triggered by oceanic processes, atmospheric dynamics, or radiative processes. Preliminary results show that a diversity of mechanisms can drive Southern Ocean sea ice variability in coupled climate models whereas observed sea ice variability appears to be dominated by atmospheric dynamics. The exploration of biases between models and observations in both the mean state and in specific processes will yield more accurate projections of the future of sea ice in the Southern Ocean. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||
Collaborative Research: Exploring the Functional Role of Antarctic Plants during Terrestrial Succession
|
1932876 |
2022-04-14 | Ball, Becky | No dataset link provided | Part I: Non-technical summary The Antarctic Peninsula warmed very rapidly in the late part of the 20th century, much faster than the global average, and this warming is predicted to resume and continue over the rest of the 21st century. One consequence of this rapid warming is the melting and subsequent retreat of glaciers, leading to an increase in newly-exposed land on the Peninsula that was previously covered with ice. Once new terrain is exposed, the process of ecological succession begins, with the arrival of early-colonizing plants, such as moss and lichens, and soil organisms - a process commonly referred to as the “greening” of Antarctica. Early stages of succession will be an increasingly common feature on the Antarctic Peninsula, but the mechanisms by which they occur on the Antarctic continent is not well understood. Once the plants have established on the newly-exposed soil, they can change many important properties, such as water dynamics, nutrient recycling, soil development, and habitat for microscopic organisms, which will ultimately determine the structure and functioning of the future ecosystem as it develops. These relationships between vegetation, soil, and the associated microorganisms, referred to as “plant-soil” interactions, are something we know virtually nothing about. This project will be the first to make a comprehensive study of how the type of colonizing plant, and the expansion of those plants from climate change, will influence terrestrial ecosystems in Antarctica. Understanding these processes is critical to understanding how the greening Antarctica is occurring and how soil communities and processes are influenced by these expanding plant communities. Through this work the research team, will also be intensively training undergraduate and graduate students, including training of students from underrepresented groups and collaborative training of students from Chile and the US. Additionally, the research groups will continue their focus on scientific outreach with K-12 schools and the general public to expand awareness of the effects of climate change in Antarctica. Part II: Technical summary In this study, the researchers will use surveys across succession sites along the Antarctic Peninsula and Scotia Arc as well as a manipulative field experiment at glacier succession sites to test how species-specific plant functional traits impact soil properties and associated microbial and invertebrate communities in a greening Antarctica. In doing so, they will pursue three integrated aims to understand how Antarctic plant functional traits alter their soil environment and soil communities during succession after glacial retreat. AIM 1) Characterize six fundamental plant functional traits (thermal conductivity, water holding capacity, albedo, decomposability, tissue nutrient content, and secondary chemistry) among diverse Antarctica flora; AIM 2) Measure the relative effects of fundamental plant functional traits on soil physical properties and soil biogeochemistry across glacial succession gradients in Antarctica; and AIM 3) Measure the relative effects of fundamental plant functional traits on soil microbial and invertebrate communities across glacial succession gradients in Antarctica. They will explore how early-colonizing plants, especially mosses and lichens, alter soil physical, biogeochemical, and biological components, potentially impacting later patterns of succession. The researhcers will use intensive surveys of plant-soil interactions across succession sites and a manipulative transplant experiment in the South Shetland Islands, Antarctica to address their aims. The investigators will collect data on plant functional traits and their effects on soil physical properties, biogeochemistry, biotic abundance, and microbial metagenomics. The data collected will be the first comprehensive measures of the relative importance of plant functional types during glacial retreat and vegetative expansion from climate change in Antarctica, aiding our understanding of how plant functional group diversity and abundance are changing in a greening Antarctica. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-59.666116 -62.15,-59.5128377 -62.15,-59.3595594 -62.15,-59.2062811 -62.15,-59.0530028 -62.15,-58.8997245 -62.15,-58.7464462 -62.15,-58.5931679 -62.15,-58.4398896 -62.15,-58.2866113 -62.15,-58.133333 -62.15,-58.133333 -62.1731502,-58.133333 -62.1963004,-58.133333 -62.2194506,-58.133333 -62.2426008,-58.133333 -62.265751,-58.133333 -62.2889012,-58.133333 -62.3120514,-58.133333 -62.3352016,-58.133333 -62.3583518,-58.133333 -62.381502,-58.2866113 -62.381502,-58.4398896 -62.381502,-58.5931679 -62.381502,-58.7464462 -62.381502,-58.8997245 -62.381502,-59.0530028 -62.381502,-59.2062811 -62.381502,-59.3595594 -62.381502,-59.5128377 -62.381502,-59.666116 -62.381502,-59.666116 -62.3583518,-59.666116 -62.3352016,-59.666116 -62.3120514,-59.666116 -62.2889012,-59.666116 -62.265751,-59.666116 -62.2426008,-59.666116 -62.2194506,-59.666116 -62.1963004,-59.666116 -62.1731502,-59.666116 -62.15)) | POINT(-58.8997245 -62.265751) | false | false | |||
CAREER: Coastal Antarctic Snow Algae and Light Absorbing Particles: Snowmelt, Climate and Ecosystem Impacts
|
2046240 |
2021-09-10 | Khan, Alia | No dataset link provided | ________________________________________________________________________________________________ Part I: Non-technical Summary The Antarctic Peninsula is one of the most rapidly warming regions on the planet. This 5-yr time-series program will build on an ongoing international collaboration with scientists from the Chilean Antarctic Program to evaluate the role of temperature, light absorbing particles, snow-algae growth, and their radiative forcing effects on snow and ice melt in the Western Antarctic Peninsula. There is strong evidence that these effects may be intensifying due to a warming climate. Rising temperatures can increase the growth rate of coastal snow algae as well as enhance the input of particles from sources such as the long-range transport of black carbon to the Antarctic continent from intensifying Southern Hemisphere wildfire seasons. Particle and algae feedbacks can have immediate local impacts on snow melt and long-term regional impacts on climate because reduced snow cover alters how the Antarctic continent interacts with the rest of the global climate. A variety of ground-based and remote sensing data collected across multiple spatial scales will be used. Ground measurements will be compared to satellite imagery to develop novel computer algorithms to map ice algal bloom effects under changing climates. The project is expected to fundamentally advance knowledge of the spatial and temporal snow algae growing season, which is needed to quantify impacts on regional snow and ice melt. The program also has a strong partnership with the International Association of Antarctic Tour Operators to involve cruise passengers as citizen scientists for sample collection. Antarctic research results will be integrated into undergraduate curricula and research opportunities through studies to LAPs and snow algae in the Pacific Northwest. The PI will recruit and train a diverse pool of students in cryosphere climate related research methods on Mt. Baker in Western Washington. Trained undergraduate will then serve as instructors for a local Snow School that takes middle school students to Mt. Baker to learn about snow science. Resulting datasets from Antarctica and Mt. Baker will be used in University classes to explore regional effects of climate change. Along with enhancing cryosphere-oriented place-based undergraduate field courses in the Pacific Northwest, the PI will recruit and train a diverse pool of undergraduate students to serve as instructors for the Mt. Baker Snow School program. This award will advance our understanding of cryosphere-climate feedbacks, which are likely changing and will continue to evolve in a warming world, while also increasing under-represented student engagement in the polar geosciences. Part 2: Technical Summary Rapid and persistent climate warming in the Western Antarctic Peninsula is likely resulting in intensified snow-algae growth and an extended bloom season in coastal areas. Similarly, deposition of light absorbing particles (LAPs) onto Antarctica cryosphere surfaces, such as black carbon from intensifying Southern Hemisphere wildfire seasons, and dust from the expansion of ice-free regions in the Antarctic Peninsula, may be increasing. The presence of snow algae blooms and LAPs enhance the absorption of solar radiation by snow and ice surfaces. This positive feedback creates a measurable radiative forcing, which can have immediate local and long-term regional impacts on albedo, snow melt and downstream ecosystems. This project will investigate the spatial and temporal distribution of snow algae, black carbon and dust across the Western Antarctica Peninsula region, their response to climate warming, and their role in regional snow and ice melt. Data will be collected across multiple spatial scales from in situ field measurements and sample collection to imagery from ground-based photos and high resolution multi-spectral satellite sensors. Ground measurements will inform development and application of novel algorithms to map algal bloom extent through time using 0.5-3m spatial resolution multi-spectral satellite imagery. Results will be used to improve snow algae parameterization in a new version of the Snow Ice Aerosol Radiation model (SNICARv3) that includes bio-albedo feedbacks, eventually informing models of ice-free area expansion through incorporation of SNICARv3 in the Community Earth System Model. Citizen scientists will be mentored and engaged in the research through an active partnership with the International Association of Antarctic Tour Operators that frequently visits the region. The cruise ship association will facilitate sampling to develop a unique snow algae observing network to validate remote sensing algorithms that map snow algae with high-resolution multi-spectral satellite imagery from space. These time-series will inform instantaneous and interannual radiative forcing calculations to assess impacts of snow algae and LAPs on regional snow melt. Quantifying the spatio-temporal growing season of snow algae and impacts from black carbon and dust will increase our ability to model their impact on snow melt, regional climate warming and ice-free expansion in the Antarctic Peninsula region. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-75 -62,-73.5 -62,-72 -62,-70.5 -62,-69 -62,-67.5 -62,-66 -62,-64.5 -62,-63 -62,-61.5 -62,-60 -62,-60 -62.85,-60 -63.7,-60 -64.55,-60 -65.4,-60 -66.25,-60 -67.1,-60 -67.95,-60 -68.8,-60 -69.65,-60 -70.5,-61.5 -70.5,-63 -70.5,-64.5 -70.5,-66 -70.5,-67.5 -70.5,-69 -70.5,-70.5 -70.5,-72 -70.5,-73.5 -70.5,-75 -70.5,-75 -69.65,-75 -68.8,-75 -67.95,-75 -67.1,-75 -66.25,-75 -65.4,-75 -64.55,-75 -63.7,-75 -62.85,-75 -62)) | POINT(-67.5 -66.25) | false | false | |||
Collaborative Research: Decoding & Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs
|
1043580 |
2016-07-28 | Reusch, David; Lampkin, Derrick | The presence of ice ponds from surface melting of glacial ice can be a significant threshold in assessing the stability of ice sheets, and their overall response to a warming climate. Snow melt has a much reduced albedo, leading to additional seasonal melting from warming insolation. Water run-off not only contributes to the mass loss of ice sheets directly, but meltwater reaching the glacial ice bed may lubricate faster flow of ice sheets towards the ocean. Surficial meltwater may also reach the grounding lines of glacial ice through the wedging open of existing crevasses. The occurrence and amount of meltwater refreeze has even been suggested as a paleo proxy of near-surface atmospheric temperature regimes. Using contemporary remote sensing (microwave) satellite assessment of surface melt occurrence and extent, the predictive skill of regional meteorological models and reanalyses (e.g. WRF, ERA-Interim) to describe the synoptic conditions favourable to surficial melt is to be investigated. Statistical approaches and pattern recognition techniques are argued to provide a context for projecting future ice sheet change. The previous Intergovernmental Panel on Climate Change (IPCC AR4) commented on our lack of understanding of ice-sheet mass balance processes in polar regions and the potential for sea-level change. The IPPC suggested that the forthcoming AR5 efforts highlight regional cryosphere modeling efforts, such as is proposed here. | POLYGON((-180 -47,-144 -47,-108 -47,-72 -47,-36 -47,0 -47,36 -47,72 -47,108 -47,144 -47,180 -47,180 -51.3,180 -55.6,180 -59.9,180 -64.2,180 -68.5,180 -72.8,180 -77.1,180 -81.4,180 -85.7,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.7,-180 -81.4,-180 -77.1,-180 -72.8,-180 -68.5,-180 -64.2,-180 -59.9,-180 -55.6,-180 -51.3,-180 -47)) | POINT(0 -89.999) | false | false | ||||
Spectral and Broadband Albedo of Antarctic Sea-ice Types
|
1141275 |
2015-01-30 | Warren, Stephen; Zatko, Maria |
|
The albedo, or reflection coefficient, is a measure of the diffuse reflectivity of an irradiated surface. With the sunlit atmosphere as a light source, and sea-ice as a diffuse reflecting surface, the albedo would be the fraction of incident light that is returned to the atmosphere. A perfect (white) reflecting surface would have an albedo of 1; a perfect (black) absorbing surface would have an albedo of 0. The albedo of sea-ice is needed to assess the solar energy budget of the marginal ice zone, to compute the partial solar bands in radiation budgets in general circulation and earth system models, and is also needed to interpret remote sensing imagery data products. Applications requiring albedos further into the near IR, out to 2500nm, are assumed or approximated. Modern spectral radiometers, such as will be used in this campaign on a Southern Ocean voyage from Hobart to Antarctica, can extend these measurements of albedo from 350 to 2500nm, allowing earlier estimates to be verified, or corrected. Surfaces to be encountered on this research cruise are expected to include open water, grease ice, nila ice, pancake ice, young grey ice, young grey-white ice, along with first year ice. The presence of variable amounts of snow on these surfaces is also of interest. Light absorbing impurities in the snow and ice, including black carbon and organic matter (brown carbon) are different from those found in Arctic Sea ice, the Antarctic being so remote from combustion sources. This may allow better understanding of the seasonal cycles, energy budgets and their recent trends in spatial extent and thickness. The project will also broaden the educational experiences of both US and Australian students participating in the measurement campaign | None | None | false | false | |||
Electrical and Optical Measurements on the Siple Dome Ice Core
|
9526420 |
2003-05-08 | Taylor, Kendrick C. |
|
This award is for support for the measurement of electrical and optical properties of the Siple Dome ice core. The electrical methods can be used to determine the concentration of the hydrogen ions and the concentration of a weighted sum of all ions. The electrical measurements can resolve features as small as 1 cm. The albedo of the core is also measured with a laser system that can resolve features as small as 0.5 cm. The high spatial resolution of these methods makes them ideal for resolving narrow features in the core, which can be missed in larger composite samples. The measurements will be particularly useful for assisting to date the core and to identify short duration features in the record, such as volcanic eruptions. These measurements will also provide useful information for assessing the temporal variability of Holocene accumulation rate and atmospheric circulation. | None | None | false | false |