{"dp_type": "Project", "free_text": "ALOS"}
[{"awards": null, "bounds_geometry": null, "dataset_titles": "Deuterium isotopic composition of atmospheric methane across Dansgaard Oesgher Event 8, Talos Dome Ice Core, Antarctica", "datasets": [{"dataset_uid": "601814", "doi": "10.15784/601814", "repository": "USAP-DC", "science_program": null, "title": "Deuterium isotopic composition of atmospheric methane across Dansgaard Oesgher Event 8, Talos Dome Ice Core, Antarctica", "url": "http://www.usap-dc.org/view/dataset/601814"}], "date_created": "Tue, 23 Jul 2024 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Abrupt Climate Change; Antarctica; Biogeochemical Cycles; Carbon Cycle; Cryosphere; Ice Core Records; Talos Dome", "locations": "Talos Dome; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Riddell-Young, Benjamin; Bauska, Thomas; Fischer, Hubertus; Menking, James; Brook, Edward J.; Clark, Reid; Schmitt, Jochen; Lee, James; Iseli, Rene", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": null, "bounds_geometry": null, "dataset_titles": "VSMOW-SLAP d170, d180, and 17O-excess data from WAIS Divide Ice Core Project, Siple Dome and Taylor Dome", "datasets": [{"dataset_uid": "601743", "doi": "10.15784/601743", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "VSMOW-SLAP d170, d180, and 17O-excess data from WAIS Divide Ice Core Project, Siple Dome and Taylor Dome", "url": "http://www.usap-dc.org/view/dataset/601743"}], "date_created": "Fri, 13 Oct 2023 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Delta 18O; Delta O-17; Epica Dome C; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Talos Dome; Taylor Dome; Vostok", "locations": "Talos Dome; Siple Dome; Taylor Dome; Talos Dome; Epica Dome C; Vostok; Antarctica; Siple Dome; Taylor Dome; Epica Dome C", "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Steig, Eric J.; Schoenemann, Spruce", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": null, "uid": null, "west": null}, {"awards": "1043649 Hock, Regine", "bounds_geometry": null, "dataset_titles": "King George and Livingston Islands: Velocities and Digital Elevation Model", "datasets": [{"dataset_uid": "609667", "doi": "10.7265/N5R49NR1", "keywords": "Antarctica; Antarctic Peninsula; Digital Elevation Model; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Ice Velocity", "people": "Hock, Regine; Osmanoglu, Batuhan", "repository": "USAP-DC", "science_program": null, "title": "King George and Livingston Islands: Velocities and Digital Elevation Model", "url": "https://www.usap-dc.org/view/dataset/609667"}], "date_created": "Wed, 17 Feb 2016 00:00:00 GMT", "description": "1043649/Braun This award supports a project to determine the current mass balance of selected glaciers of the Western Antarctic Peninsula (WAP) and adjacent islands, including King George Island and Livingston Island. A major goal is to discriminate the climatic and dynamic components of the current mass budget. The dynamic component will be assessed using a flux gate approach. Glacier velocity fields will be derived by offset tracking on repeat SAR satellite imagery, and ice thicknesses across grounding lines or near terminus will be approximated from a new methods based on mass continuity. The surface mass balance will be computed from a spatially distributed temperature-index mass-balance model forced by temperature and precipitation data from regional climate models. Our results will provide improved mass budget estimates of Western Antarctic Peninsula glaciers and a more thorough understanding of the ratio between the climatic and dynamic components. The techniques to be developed will be applicable to other glaciers in the region allowing regional scale mass budgets to be derived. The broader impacts of this work are that glacier wastage is currently the most important contributor to global sea level rise and the Antarctic Peninsula has been identified as one of the largest single contributors. Future sea-level rise has major societal, economic and ecological implications. The activity will foster new partnerships through collaboration with European and South American colleagues. The project will form the base of of a postdoctoral research fellowship. It will also provide training of undergraduate and graduate students through inclusion of data and results in course curriculums.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e PALSAR", "is_usap_dc": true, "keywords": "ALOS; Digital Elevation Model", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Glaciology", "paleo_time": null, "persons": "Hock, Regine; Osmanoglu, Batuhan", "platforms": "SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ADVANCED LAND OBSERVING SATELLITE (ALOS) \u003e ALOS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Contribution of Western Antarctic Peninsula glaciers to sea level rise: Separation of the dynamic and climatic components", "uid": "p0000054", "west": null}, {"awards": "0230316 White, James; 0230021 Sowers, Todd; 0230348 Dunbar, Nelia", "bounds_geometry": "POINT(135.1333 -76.05)", "dataset_titles": "Mount Moulton Isotopes and Other Ice Core Data", "datasets": [{"dataset_uid": "609640", "doi": "10.7265/N5FT8J0N", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Lake Vostok; Mount Moulton; Paleoclimate; Talos Dome; Taylor Dome", "people": "Steig, Eric J.; White, James; Popp, Trevor", "repository": "USAP-DC", "science_program": null, "title": "Mount Moulton Isotopes and Other Ice Core Data", "url": "https://www.usap-dc.org/view/dataset/609640"}], "date_created": "Tue, 01 Aug 2006 00:00:00 GMT", "description": "The summit crater of Mt. Moulton, in West Antarctica, contains a 600-m thick horizontally-exposed section of ice with intercalated tephra layers from nearby Mt Berlin. Argon-40/Argon-39 dating of the thick, near-source tephra indicates that the age of the horizontal ice section ranges between 15,000 and 492,000 years. Thus, the Mt Moulton site offers an unparalleled repository of ancient West Antarctic snow and trapped air that can be used to investigate West Antarctic climate over much of the past 500,000 years. The planar nature and consistent dips of the tephra layers suggests that, although the ice section has thinned, it is otherwise undeformed. The Mt. Moulton site was visited during the 1999/2000 field season, at which time a horizontal ice core representing approximately 400 meters of ice was collected, ranging in age from 15,000 to older than 480,000 years. In addition to this horizontal core, samples of ice at a range of depths were collected in order to test the quality of the climate record in the ice. Forty tephra layers intercalated in the ice were also collected in order to provide chronology for the ice section. The results of this first effort are extremely encouraging. Based on the d?18 O of ice, for example, there is clearly a useable record of past climate at Mt. Moulton extending back beyond 140,000 years. There is work to do, however, to realize the full potential of this horizontal ice core. The elemental and isotopic composition of trapped gases suggest some contamination with modern air, for example. As gas cross-dating of ice cores is the current standard by which climate records are intercompared, we need to understand why and how the gas record is compromised before adding Moulton to our arsenal of ice core paleoclimate records. This award supports a collaborative effort between three institutions with following objectives: 1) to evaluate more thoroughly the integrity of the climatic record through shallow drilling of the blue ice area, as well as the snow field upslope from the blue ice; 2) to improve the radioisotopic dating of specific tephra layers; 3) to obtain baseline information about modern snowfall deposition, mean annual temperature, and wind pumping around the summit of Mt. Moulton; and 4) to study how firn densification differs when surface accumulation changes from net accumulation to net ablation.", "east": 135.1333, "geometry": "POINT(135.1333 -76.05)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES", "is_usap_dc": true, "keywords": "LABORATORY; Climate; Argon-40; 40Ar; Argon-39; FIELD SURVEYS; Chronology; Ice Core Gas Age; Gas Record; Ice Core; FIELD INVESTIGATION; Tephra; Mount Moulton; Not provided; Caldera; 39Ar; Stratigraphy; Ice Core Depth", "locations": "Mount Moulton", "north": -76.05, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "White, James; Popp, Trevor; Dunbar, Nelia; Sowers, Todd A.; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.05, "title": "Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica", "uid": "p0000755", "west": 135.1333}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "dataset_titles": "Talos Dome Ice Core Deuterium Isotope Data", "datasets": [{"dataset_uid": "609252", "doi": "", "repository": "USAP-DC", "science_program": null, "title": "Talos Dome Ice Core Deuterium Isotope Data", "url": "http://www.usap-dc.org/view/dataset/609252"}], "date_created": "Fri, 27 Aug 2004 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Talos Dome", "locations": "Antarctica; Talos Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stenni, Barbara; Jouzel, Jean", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
None
|
None | 2024-07-23 | Riddell-Young, Benjamin; Bauska, Thomas; Fischer, Hubertus; Menking, James; Brook, Edward J.; Clark, Reid; Schmitt, Jochen; Lee, James; Iseli, Rene |
|
None | None | None | false | false | |||
None
|
None | 2023-10-13 | Steig, Eric J.; Schoenemann, Spruce |
|
None | None | None | false | false | |||
Contribution of Western Antarctic Peninsula glaciers to sea level rise: Separation of the dynamic and climatic components
|
1043649 |
2016-02-17 | Hock, Regine; Osmanoglu, Batuhan |
|
1043649/Braun This award supports a project to determine the current mass balance of selected glaciers of the Western Antarctic Peninsula (WAP) and adjacent islands, including King George Island and Livingston Island. A major goal is to discriminate the climatic and dynamic components of the current mass budget. The dynamic component will be assessed using a flux gate approach. Glacier velocity fields will be derived by offset tracking on repeat SAR satellite imagery, and ice thicknesses across grounding lines or near terminus will be approximated from a new methods based on mass continuity. The surface mass balance will be computed from a spatially distributed temperature-index mass-balance model forced by temperature and precipitation data from regional climate models. Our results will provide improved mass budget estimates of Western Antarctic Peninsula glaciers and a more thorough understanding of the ratio between the climatic and dynamic components. The techniques to be developed will be applicable to other glaciers in the region allowing regional scale mass budgets to be derived. The broader impacts of this work are that glacier wastage is currently the most important contributor to global sea level rise and the Antarctic Peninsula has been identified as one of the largest single contributors. Future sea-level rise has major societal, economic and ecological implications. The activity will foster new partnerships through collaboration with European and South American colleagues. The project will form the base of of a postdoctoral research fellowship. It will also provide training of undergraduate and graduate students through inclusion of data and results in course curriculums. | None | None | false | false | |||
Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica
|
0230316 0230021 0230348 |
2006-08-01 | White, James; Popp, Trevor; Dunbar, Nelia; Sowers, Todd A.; Steig, Eric J. |
|
The summit crater of Mt. Moulton, in West Antarctica, contains a 600-m thick horizontally-exposed section of ice with intercalated tephra layers from nearby Mt Berlin. Argon-40/Argon-39 dating of the thick, near-source tephra indicates that the age of the horizontal ice section ranges between 15,000 and 492,000 years. Thus, the Mt Moulton site offers an unparalleled repository of ancient West Antarctic snow and trapped air that can be used to investigate West Antarctic climate over much of the past 500,000 years. The planar nature and consistent dips of the tephra layers suggests that, although the ice section has thinned, it is otherwise undeformed. The Mt. Moulton site was visited during the 1999/2000 field season, at which time a horizontal ice core representing approximately 400 meters of ice was collected, ranging in age from 15,000 to older than 480,000 years. In addition to this horizontal core, samples of ice at a range of depths were collected in order to test the quality of the climate record in the ice. Forty tephra layers intercalated in the ice were also collected in order to provide chronology for the ice section. The results of this first effort are extremely encouraging. Based on the d?18 O of ice, for example, there is clearly a useable record of past climate at Mt. Moulton extending back beyond 140,000 years. There is work to do, however, to realize the full potential of this horizontal ice core. The elemental and isotopic composition of trapped gases suggest some contamination with modern air, for example. As gas cross-dating of ice cores is the current standard by which climate records are intercompared, we need to understand why and how the gas record is compromised before adding Moulton to our arsenal of ice core paleoclimate records. This award supports a collaborative effort between three institutions with following objectives: 1) to evaluate more thoroughly the integrity of the climatic record through shallow drilling of the blue ice area, as well as the snow field upslope from the blue ice; 2) to improve the radioisotopic dating of specific tephra layers; 3) to obtain baseline information about modern snowfall deposition, mean annual temperature, and wind pumping around the summit of Mt. Moulton; and 4) to study how firn densification differs when surface accumulation changes from net accumulation to net ablation. | POINT(135.1333 -76.05) | POINT(135.1333 -76.05) | false | false | |||
None
|
None | 2004-08-27 | Stenni, Barbara; Jouzel, Jean |
|
None | None | None | false | false |