{"dp_type": "Dataset", "free_text": "Well Measurements"}
[{"awards": "1343649 Levy, Joseph", "bounds_geometry": ["POLYGON((162.852 -77.6111,162.9893 -77.6111,163.1266 -77.6111,163.2639 -77.6111,163.4012 -77.6111,163.5385 -77.6111,163.6758 -77.6111,163.8131 -77.6111,163.9504 -77.6111,164.0877 -77.6111,164.225 -77.6111,164.225 -77.65331,164.225 -77.69552,164.225 -77.73773,164.225 -77.77994,164.225 -77.82215,164.225 -77.86436,164.225 -77.90657,164.225 -77.94878,164.225 -77.99099,164.225 -78.0332,164.0877 -78.0332,163.9504 -78.0332,163.8131 -78.0332,163.6758 -78.0332,163.5385 -78.0332,163.4012 -78.0332,163.2639 -78.0332,163.1266 -78.0332,162.9893 -78.0332,162.852 -78.0332,162.852 -77.99099,162.852 -77.94878,162.852 -77.90657,162.852 -77.86436,162.852 -77.82215,162.852 -77.77994,162.852 -77.73773,162.852 -77.69552,162.852 -77.65331,162.852 -77.6111))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics.\n\nNon-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings.\n", "east": 164.225, "geometry": ["POINT(163.5385 -77.82215)"], "keywords": "Antarctica; Chemistry:soil; Chemistry:Soil; Critical Zone; Dry Valleys; Permafrost; Sample/collection Description; Sample/Collection Description; Well Measurements", "locations": "Dry Valleys; Antarctica", "north": -77.6111, "nsf_funding_programs": null, "persons": "Levy, Joseph", "project_titles": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "projects": [{"proj_uid": "p0000407", "repository": "USAP-DC", "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0332, "title": "Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica", "uid": "600139", "west": 162.852}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica
|
1343649 |
2015-01-01 | Levy, Joseph |
Cryptic Hydrology of the McMurdo Dry Valleys: Water Track Contributions to Water and Geochemical Budgets in Taylor Valley, Antarctica |
The PIs propose to quantify the hillslope water, solute, and carbon budgets for Taylor Valley in the McMurdo Dry Valleys, using water tracks to investigate near-surface geological processes and challenge the paradigm that shallow groundwater is minimal or non-exixtant. Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. Four hypotheses will be tested: 1) water tracks are important pathways for water and solute transport; 2) water tracks transport more dissolved silica than streams in Taylor Valley indicating they are the primary site of chemical weathering for cold desert soils and bedrock; 3) water tracks that drain highland terrains are dominated by humidity-separated brines while water tracks that drain lowland terrains are dominated by marine aerosols; 4) water tracks are the sites of the highest terrestrial soil carbon concentrations and the strongest CO2 fluxes in Taylor Valley and their carbon content increases with soil age, while carbon flux decreases with age. To test these hypotheses the PIs will carry out a suite of field measurements supported by modeling and remote sensing. They will install shallow permafrost wells in water tracks that span the range of geological, climatological, and topographic conditions in Taylor Valley. Multifrequency electromagnetic induction sounding of the upper ~1 m of the permafrost will create the first comprehensive map of soil moisture in Taylor Valley, and will permit direct quantification of water track discharge across the valley. The carbon contents of water track soils will be measured and linked to global carbon dynamics. Non-science majors at Oregon State University will be integrated into the proposed research through a new Global Environmental Change course focusing on the scientific method in Antarctica. Three undergraduate students, members of underrepresented minorities, will be entrained in the research, will contribute to all aspects of field and laboratory science, and will present results at national meetings. | ["POLYGON((162.852 -77.6111,162.9893 -77.6111,163.1266 -77.6111,163.2639 -77.6111,163.4012 -77.6111,163.5385 -77.6111,163.6758 -77.6111,163.8131 -77.6111,163.9504 -77.6111,164.0877 -77.6111,164.225 -77.6111,164.225 -77.65331,164.225 -77.69552,164.225 -77.73773,164.225 -77.77994,164.225 -77.82215,164.225 -77.86436,164.225 -77.90657,164.225 -77.94878,164.225 -77.99099,164.225 -78.0332,164.0877 -78.0332,163.9504 -78.0332,163.8131 -78.0332,163.6758 -78.0332,163.5385 -78.0332,163.4012 -78.0332,163.2639 -78.0332,163.1266 -78.0332,162.9893 -78.0332,162.852 -78.0332,162.852 -77.99099,162.852 -77.94878,162.852 -77.90657,162.852 -77.86436,162.852 -77.82215,162.852 -77.77994,162.852 -77.73773,162.852 -77.69552,162.852 -77.65331,162.852 -77.6111))"] | ["POINT(163.5385 -77.82215)"] | false | false |