{"dp_type": "Dataset", "free_text": "Volcanic Events"}
[{"awards": "1851022 Fudge, Tyler", "bounds_geometry": ["POINT(123.35 -75.1)"], "date_created": "Fri, 22 Nov 2024 00:00:00 GMT", "description": "This data sets contains the width of volcanic events as identified in the Dome C ice core and described in Fudge et al., 2024", "east": 123.35, "geometry": ["POINT(123.35 -75.1)"], "keywords": "Antarctica; Cryosphere", "locations": "Antarctica", "north": -75.1, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fudge, T. J.", "project_titles": "Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation", "projects": [{"proj_uid": "p0010211", "repository": "USAP-DC", "title": "Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.1, "title": "Volcanic Widths in Dome C Interglacials and Glacials", "uid": "601855", "west": 123.35}, {"awards": "2023355 Schmandt, Brandon", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Wed, 26 Jun 2024 00:00:00 GMT", "description": "This catalog/dataset contains 60,006 seismic events between magnitude (Mw) -1.0 and 4.5. It was obtained using publicly available seismic data from 2000 through 2020. The catalog was generated using a workflow that includes new and established software for earthquake detection (Mousavi et al., 2020; Woollam et al., 2022), association (Zhang et al., 2019), location (Lomax et al., 2000, 2009) and magnitude estimation (Satriano, 2022). Events in the catalog are located near volcanoes, outlet glaciers, ice shelves, and within the continental interior. The catalog thus includes events from diverse source processes (cryospheric, volcanic, and tectonic). Preliminary observations include thousands of events near Mount Erebus, Ross Island, and the McMurdo Sound region, repeated seismic events at Ice Streams or large glaciers, and deep long period events in Marie Byrd Land Executive Committee Range. The file contains the latitude, longitude, depth, origin time, Magnitude, errors in the locations and the RMS. More details of the data set and all relevant methods can be found in Pena Castro et al., 2024.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cryosphere; Earthquakes; Icequakes; Volcanic Events", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Pena Castro, Andres", "project_titles": "EAGER: Lowering the detection threshold of Antarctic seismicity to reveal undiscovered intraplate deformation", "projects": [{"proj_uid": "p0010450", "repository": "USAP-DC", "title": "EAGER: Lowering the detection threshold of Antarctic seismicity to reveal undiscovered intraplate deformation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "A seismic catalog for the southernmost continent", "uid": "601805", "west": -180.0}, {"awards": "1851022 Fudge, Tyler", "bounds_geometry": ["POINT(123.33 -75.09)"], "date_created": "Fri, 22 Dec 2023 00:00:00 GMT", "description": "Volcanic deposition of sulfuric acid in ice cores is important both for understanding past volcanic activity and for synchronizing ice core timescales. Sulfuric acid has a low eutectic point, so it can potentially exist in liquid at grain boundaries and veins, accelerating chemical diffusion. A high effective diffusivity would allow post-depositional diffusion to obscure the climate history and the peak matching among older portions of ice cores. Here, we use records of sulfate from the EPICA Dome C (EDC) ice core to estimate the effective diffusivity of sulfuric acid in ice. We focus on EDC because multiple glacial-interglacial cycles are preserved, allowing analysis for long timescales and deposition in similar climates. We calculate the mean concentration gradient and the width of prominent volcanic events, and analyze the evolution of each with depth/age. We find the effective diffusivities for interglacials and glacial maximums to be 5 \u00b1 3 \u00d7 10-9 m2 a-1, an order of magnitude lower than a previous estimate derived from the Holocene portion of EDC (Barnes et al., 2003). The effective diffusivity may be even smaller if the bias from artificial smoothing from the sampling is accounted for. Effective diffusivity is not obviously affected by the ice temperature until about -10\u00b0C, 3000m depth, which is also where anomalous sulfate peaks begin to be observed (Traversi et al., 2009). Low effective diffusivity suggests that sulfuric acid is not readily diffusing in liquid-like veins in the upper portions of the Antarctic ice sheet and that records may be preserved in deep, old ice if the ice temperature remains well below the pressure melting point.", "east": 123.33, "geometry": ["POINT(123.33 -75.09)"], "keywords": "Antarctica", "locations": "Antarctica", "north": -75.09, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fudge, T. J.; Severi, Mirko", "project_titles": "Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation", "projects": [{"proj_uid": "p0010211", "repository": "USAP-DC", "title": "Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "COLDEX", "south": -75.09, "title": "EPICA Dome C Sulfate Data 7-3190m", "uid": "601759", "west": 123.33}, {"awards": "1443336 Osterberg, Erich", "bounds_geometry": ["POINT(-180 -90)"], "date_created": "Thu, 29 Aug 2019 00:00:00 GMT", "description": "The South Pole Ice Core (SPICEcore) was drilled in 2014-2016 to provide a detailed multi-proxy archive of paleoclimate conditions in East Antarctica during the Holocene and late Pleistocene. Interpretation of these records requires an accurate depth-age relationship. Here, we present the SP19 timescale for the age of the ice of SPICEcore. SP19 is synchronized to the WD2014 chronology from the West Antarctic Ice Sheet Divide (WAIS Divide) ice core using stratigraphic matching of 251 volcanic events. These events indicate an age of 54,302 +/- 519 years BP (before the year 1950) at the bottom of SPICEcore. Annual layers identified in sodium and magnesium ions to 11,341 BP were used to interpolate between stratigraphic volcanic tie points, yielding an annually-resolved chronology through the Holocene. Estimated timescale uncertainty during the Holocene is less than 18 years relative to WD2014, with the exception of the interval between 1800 to 3100 BP when uncertainty estimates reach +/- 25 years due to widely spaced volcanic tie points. Prior to the Holocene, uncertainties remain within 124 years relative to WD2014. Results show an average Holocene accumulation rate of 7.4 cm/yr (water equivalent). The time variability of accumulation rate is consistent with expectations for steady-state ice flow through the modern spatial pattern of accumulation rate. Time variations in nitrate concentration, nitrate seasonal amplitude, and \u03b415N of N2 in turn are as expected for the accumulation-rate variations. The highly variable yet well-constrained Holocene accumulation history at the site can help improve scientific understanding of deposition-sensitive climate proxies such as \u03b415N of N2 and photolyzed chemical compounds.", "east": -180.0, "geometry": ["POINT(-180 -90)"], "keywords": "Antarctica; Calcium (ca); Chemistry:ice; Chemistry:Ice; Depth; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciochemistry; Glaciology; Ice; Ice Core; Ice Core Chemistry; Ice Core Data; Ice Core Records; Ice Core Stratigraphy; Nitrate; Nitrogen Isotopes; Paleoclimate; Snow/ice; Snow/Ice; South Pole; SPICEcore", "locations": "South Pole; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Winski, Dominic A.; Fudge, T. J.; Dunbar, Nelia; Buizert, Christo; Bay, Ryan; Souney, Joseph Jr.; Sigl, Michael; McConnell, Joseph; Fegyveresi, John; Cole-Dai, Jihong; Thundercloud, Zayta; Cox, Thomas S.; Kreutz, Karl; Epifanio, Jenna; Ortman, Nikolas; Brook, Edward J.; Beaudette, Ross; Sowers, Todd A.; Steig, Eric J.; Morris, Valerie; Kahle, Emma; Ferris, David G.; Aydin, Murat; Nicewonger, Melinda R.; Casey, Kimberly A.; Alley, Richard; Waddington, Edwin D.; Osterberg, Erich; Severinghaus, Jeffrey P.; Jones, Tyler R.; Iverson, Nels", "project_titles": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements", "projects": [{"proj_uid": "p0010051", "repository": "USAP-DC", "title": "Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "The South Pole Ice Core (SPICEcore) chronology and supporting data", "uid": "601206", "west": -180.0}, {"awards": "1443232 Waddington, Edwin", "bounds_geometry": ["POINT(-180 -90)"], "date_created": "Mon, 08 Jul 2019 00:00:00 GMT", "description": "These are AC-ECM data used to identify volcanic events in SPICEcore. The data have been normalized to get a consistent baseline for data collected from three different processing seasons.", "east": -180.0, "geometry": ["POINT(-180 -90)"], "keywords": "Antarctica; Electrical Conductivity; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Physical Properties; Snow/ice; Snow/Ice; South Pole; SPICEcore; Volcanic", "locations": "Antarctica; South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Waddington, Edwin D.; Fudge, T. J.", "project_titles": "Using Electrical Conductance Measurements to Develop the South Pole Ice Core Chronology", "projects": [{"proj_uid": "p0000378", "repository": "USAP-DC", "title": "Using Electrical Conductance Measurements to Develop the South Pole Ice Core Chronology"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "AC-ECM for SPICEcore", "uid": "601189", "west": -180.0}, {"awards": "1142007 Kurbatov, Andrei", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 03 Aug 2017 00:00:00 GMT", "description": "This dataset contains ice core tephra geochemical data from 5 temporal intervals in the RICE, WDC-06A, SPRESSO, and SPICE ice cores. The temporal intervals included are 1991 C.E., 1963 C.E., 1815 C.E., 1809 C.E., and 1257 C.E. These intervals are often analyzed for volcanic sulfate by ice core scientists. The volcanic events associated with these intervals caused global weather and climate phenomena and are often used by climate modelers as well to understand volcanic sulfate loading on the climate.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Intracontinental Magmatism; IntraContinental Magmatism; Tephra", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Kurbatov, Andrei V.", "project_titles": "Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT)", "projects": [{"proj_uid": "p0000328", "repository": "USAP-DC", "title": "Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Antarctic Ice Core Tephra Analysis", "uid": "601038", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Volcanic Widths in Dome C Interglacials and Glacials
|
1851022 |
2024-11-22 | Fudge, T. J. |
Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation |
This data sets contains the width of volcanic events as identified in the Dome C ice core and described in Fudge et al., 2024 | ["POINT(123.35 -75.1)"] | ["POINT(123.35 -75.1)"] | false | false |
A seismic catalog for the southernmost continent
|
2023355 |
2024-06-26 | Pena Castro, Andres |
EAGER: Lowering the detection threshold of Antarctic seismicity to reveal undiscovered intraplate deformation |
This catalog/dataset contains 60,006 seismic events between magnitude (Mw) -1.0 and 4.5. It was obtained using publicly available seismic data from 2000 through 2020. The catalog was generated using a workflow that includes new and established software for earthquake detection (Mousavi et al., 2020; Woollam et al., 2022), association (Zhang et al., 2019), location (Lomax et al., 2000, 2009) and magnitude estimation (Satriano, 2022). Events in the catalog are located near volcanoes, outlet glaciers, ice shelves, and within the continental interior. The catalog thus includes events from diverse source processes (cryospheric, volcanic, and tectonic). Preliminary observations include thousands of events near Mount Erebus, Ross Island, and the McMurdo Sound region, repeated seismic events at Ice Streams or large glaciers, and deep long period events in Marie Byrd Land Executive Committee Range. The file contains the latitude, longitude, depth, origin time, Magnitude, errors in the locations and the RMS. More details of the data set and all relevant methods can be found in Pena Castro et al., 2024. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
EPICA Dome C Sulfate Data 7-3190m
|
1851022 |
2023-12-22 | Fudge, T. J.; Severi, Mirko |
Collaborative Research: The Impact of Impurities and Stress State on Polycrystalline Ice Deformation |
Volcanic deposition of sulfuric acid in ice cores is important both for understanding past volcanic activity and for synchronizing ice core timescales. Sulfuric acid has a low eutectic point, so it can potentially exist in liquid at grain boundaries and veins, accelerating chemical diffusion. A high effective diffusivity would allow post-depositional diffusion to obscure the climate history and the peak matching among older portions of ice cores. Here, we use records of sulfate from the EPICA Dome C (EDC) ice core to estimate the effective diffusivity of sulfuric acid in ice. We focus on EDC because multiple glacial-interglacial cycles are preserved, allowing analysis for long timescales and deposition in similar climates. We calculate the mean concentration gradient and the width of prominent volcanic events, and analyze the evolution of each with depth/age. We find the effective diffusivities for interglacials and glacial maximums to be 5 ± 3 × 10-9 m2 a-1, an order of magnitude lower than a previous estimate derived from the Holocene portion of EDC (Barnes et al., 2003). The effective diffusivity may be even smaller if the bias from artificial smoothing from the sampling is accounted for. Effective diffusivity is not obviously affected by the ice temperature until about -10°C, 3000m depth, which is also where anomalous sulfate peaks begin to be observed (Traversi et al., 2009). Low effective diffusivity suggests that sulfuric acid is not readily diffusing in liquid-like veins in the upper portions of the Antarctic ice sheet and that records may be preserved in deep, old ice if the ice temperature remains well below the pressure melting point. | ["POINT(123.33 -75.09)"] | ["POINT(123.33 -75.09)"] | false | false |
The South Pole Ice Core (SPICEcore) chronology and supporting data
|
1443336 |
2019-08-29 | Winski, Dominic A.; Fudge, T. J.; Dunbar, Nelia; Buizert, Christo; Bay, Ryan; Souney, Joseph Jr.; Sigl, Michael; McConnell, Joseph; Fegyveresi, John; Cole-Dai, Jihong; Thundercloud, Zayta; Cox, Thomas S.; Kreutz, Karl; Epifanio, Jenna; Ortman, Nikolas; Brook, Edward J.; Beaudette, Ross; Sowers, Todd A.; Steig, Eric J.; Morris, Valerie; Kahle, Emma; Ferris, David G.; Aydin, Murat; Nicewonger, Melinda R.; Casey, Kimberly A.; Alley, Richard; Waddington, Edwin D.; Osterberg, Erich; Severinghaus, Jeffrey P.; Jones, Tyler R.; Iverson, Nels |
Collaborative Research: South Pole Ice Core Chronology and Climate Records using Chemical and Microparticle Measurements |
The South Pole Ice Core (SPICEcore) was drilled in 2014-2016 to provide a detailed multi-proxy archive of paleoclimate conditions in East Antarctica during the Holocene and late Pleistocene. Interpretation of these records requires an accurate depth-age relationship. Here, we present the SP19 timescale for the age of the ice of SPICEcore. SP19 is synchronized to the WD2014 chronology from the West Antarctic Ice Sheet Divide (WAIS Divide) ice core using stratigraphic matching of 251 volcanic events. These events indicate an age of 54,302 +/- 519 years BP (before the year 1950) at the bottom of SPICEcore. Annual layers identified in sodium and magnesium ions to 11,341 BP were used to interpolate between stratigraphic volcanic tie points, yielding an annually-resolved chronology through the Holocene. Estimated timescale uncertainty during the Holocene is less than 18 years relative to WD2014, with the exception of the interval between 1800 to 3100 BP when uncertainty estimates reach +/- 25 years due to widely spaced volcanic tie points. Prior to the Holocene, uncertainties remain within 124 years relative to WD2014. Results show an average Holocene accumulation rate of 7.4 cm/yr (water equivalent). The time variability of accumulation rate is consistent with expectations for steady-state ice flow through the modern spatial pattern of accumulation rate. Time variations in nitrate concentration, nitrate seasonal amplitude, and δ15N of N2 in turn are as expected for the accumulation-rate variations. The highly variable yet well-constrained Holocene accumulation history at the site can help improve scientific understanding of deposition-sensitive climate proxies such as δ15N of N2 and photolyzed chemical compounds. | ["POINT(-180 -90)"] | ["POINT(-180 -90)"] | false | false |
AC-ECM for SPICEcore
|
1443232 |
2019-07-08 | Waddington, Edwin D.; Fudge, T. J. |
Using Electrical Conductance Measurements to Develop the South Pole Ice Core Chronology |
These are AC-ECM data used to identify volcanic events in SPICEcore. The data have been normalized to get a consistent baseline for data collected from three different processing seasons. | ["POINT(-180 -90)"] | ["POINT(-180 -90)"] | false | false |
Antarctic Ice Core Tephra Analysis
|
1142007 |
2017-08-03 | Kurbatov, Andrei V. |
Collaborative Research: Developing an Antarctic Tephra Database for Interdisciplinary Paleoclimate Research (AntT) |
This dataset contains ice core tephra geochemical data from 5 temporal intervals in the RICE, WDC-06A, SPRESSO, and SPICE ice cores. The temporal intervals included are 1991 C.E., 1963 C.E., 1815 C.E., 1809 C.E., and 1257 C.E. These intervals are often analyzed for volcanic sulfate by ice core scientists. The volcanic events associated with these intervals caused global weather and climate phenomena and are often used by climate modelers as well to understand volcanic sulfate loading on the climate. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |