{"dp_type": "Dataset", "free_text": "Surface Mass Balance"}
[{"awards": "1543445 Zhang, Jing", "bounds_geometry": ["POLYGON((-70.9 -65,-69.51 -65,-68.12 -65,-66.73 -65,-65.34 -65,-63.95 -65,-62.56 -65,-61.17 -65,-59.78 -65,-58.39 -65,-57 -65,-57 -65.5,-57 -66,-57 -66.5,-57 -67,-57 -67.5,-57 -68,-57 -68.5,-57 -69,-57 -69.5,-57 -70,-58.39 -70,-59.78 -70,-61.17 -70,-62.56 -70,-63.95 -70,-65.34 -70,-66.73 -70,-68.12 -70,-69.51 -70,-70.9 -70,-70.9 -69.5,-70.9 -69,-70.9 -68.5,-70.9 -68,-70.9 -67.5,-70.9 -67,-70.9 -66.5,-70.9 -66,-70.9 -65.5,-70.9 -65))"], "date_created": "Wed, 03 May 2023 00:00:00 GMT", "description": "This dataset includes the 3-km resolution budget terms of surface mass balance (SMB) and surface energy budget (SEB) for the Larsen C Ice Shelf during the melting season of 2017-18. The variables include the SMB budget terms of net surface mass balance, precipitation, runoff, blowing snow erosion, surface sublimation, and blowing snow sublimation, and the SEB budget terms of net surface energy budget, downwelling and upwelling longwave radiation, surface absorbed shortwave radiation, ground heat flux, and sensible / latent heat flux.", "east": -57.0, "geometry": ["POINT(-63.95 -67.5)"], "keywords": "Antarctica; Glaciology; Larsen C Ice Shelf; Model Data; Surface Energy Budget; Surface Mass Balance; WRF Model", "locations": "Larsen C Ice Shelf; Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Zhang, Jing; Luo, Liping", "project_titles": "Collaborative Research: Present and Projected Future Forcings on Antarctic Peninsula Glaciers and Ice Shelves using the Weather Forecasting and Research (WRF) Model", "projects": [{"proj_uid": "p0010408", "repository": "USAP-DC", "title": "Collaborative Research: Present and Projected Future Forcings on Antarctic Peninsula Glaciers and Ice Shelves using the Weather Forecasting and Research (WRF) Model"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "3-km Surface Mass and Energy Budget for the Larsen C Ice Shelf", "uid": "601685", "west": -70.9}, {"awards": "1643455 Enderlin, Ellyn; 1933764 Enderlin, Ellyn", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 06 Apr 2023 00:00:00 GMT", "description": "This dataset includes manually-extracted iceberg geometries and meltwater fluxes from 2011-2022 WorldView digital elevation model time series for 15 study sites around Antarctica. Each file contains the coordinates, median surface elevation, density, volume, surface area, draft, and submerged area estimated for an iceberg on two different observation dates (specified in the file name). The submarine meltwater flux for each iceberg, calculated as the volume change over time corrected for surface mass balance processes and creep thinning between observation dates, is provided for each iceberg. Dates listed in file names are in YYYYMMDDhhmmss format. Site abbreviations in file names are as follows: BG = Blanchard Glacier, CG = Cadman Glacier, FG = Ferrigno Glacier, FI = Filchner Ice Shelf, HG = Heim Glacier, LA = Edgeworth Glacier (Larsen A tributary), LB = Cadman Glacier (Larsen B tributary), LG = Leonardo Glacier, MI = Mertz Ice Tongue, PT = Polar Times, RI = Ronne Ice Shelf, SG = Seller Glacier, TG = Thwaites Glacier, TI = Totten Ice Shelf, and WG = Widdowson Glacier.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Elevation; Glaciology; Iceberg; Meltwater; Submarine Melt", "locations": "Antarctica; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Enderlin, Ellyn; Dickson, Adam; Miller, Emily; Dryak, Mariama; Oliver, Caitlin; Aberle, Rainey", "project_titles": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs", "projects": [{"proj_uid": "p0010210", "repository": "USAP-DC", "title": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Remotely-sensed iceberg geometries and meltwater fluxes", "uid": "601679", "west": -180.0}, {"awards": "1933764 Enderlin, Ellyn", "bounds_geometry": ["POLYGON((-63.1 -65.2,-62.99 -65.2,-62.88 -65.2,-62.77 -65.2,-62.660000000000004 -65.2,-62.55 -65.2,-62.44 -65.2,-62.33 -65.2,-62.22 -65.2,-62.11 -65.2,-62 -65.2,-62 -65.24000000000001,-62 -65.28,-62 -65.32,-62 -65.36,-62 -65.4,-62 -65.44,-62 -65.47999999999999,-62 -65.52,-62 -65.56,-62 -65.6,-62.11 -65.6,-62.22 -65.6,-62.33 -65.6,-62.44 -65.6,-62.55 -65.6,-62.660000000000004 -65.6,-62.77 -65.6,-62.88 -65.6,-62.99 -65.6,-63.1 -65.6,-63.1 -65.56,-63.1 -65.52,-63.1 -65.47999999999999,-63.1 -65.44,-63.1 -65.4,-63.1 -65.36,-63.1 -65.32,-63.1 -65.28,-63.1 -65.24000000000001,-63.1 -65.2))"], "date_created": "Mon, 24 Oct 2022 00:00:00 GMT", "description": "This dataset contains observed and modeled conditions along the Crane Glacier centerline for ~1994\u20142100. Observations include centerline (cl) coordinates, downscaled RACMO climate variables (runoff, snowfall, snowmelt, and surface mass balance), bed elevations (b), surface elevations (h), glacier width (W), calving front positions (xcf), and surface speeds (U) when available for the 1994\u20142019 period. Modeling results include glacier centerline geometry, speed, glacier mass discharge (Q_gl), and calving front and grounding line positions (x_cf and x_gl) under different future climate scenarios with varying surface mass balance (SMB), ocean thermal forcing (FT), SMB with potential feedbacks associated with enhanced surface melt water discharge and plume strengthening (SMB_enh), and concurrent SMB_enh and FT perturbations (SMB_enh_FT). Data are in \u201c.mat\u201d format, which can be read using MATLAB\u2019s \u201cload\u201d function or using Python with the Scipy \u201cscipy.io.loadmat\u201d function. ", "east": -62.0, "geometry": ["POINT(-62.55 -65.4)"], "keywords": "Antarctica; Antarctic Peninsula; Crane Glacier; Glacier Dynamics; Glacier Mass Discharge; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Modeling; Model Output", "locations": "Antarctica; Crane Glacier; Antarctic Peninsula", "north": -65.2, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Aberle, Rainey; Enderlin, Ellyn; Marshall, Hans-Peter; Kopera, Michal; Meehan, Tate", "project_titles": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs", "projects": [{"proj_uid": "p0010210", "repository": "USAP-DC", "title": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.6, "title": "Crane Glacier centerline observations and modeling results ", "uid": "601617", "west": -63.1}, {"awards": "1654922 de la Pena, Santiago", "bounds_geometry": ["POLYGON((-180 -89.99,-144 -89.99,-108 -89.99,-72 -89.99,-36 -89.99,0 -89.99,36 -89.99,72 -89.99,108 -89.99,144 -89.99,180 -89.99,180 -89.991,180 -89.99199999999999,180 -89.993,180 -89.994,180 -89.995,180 -89.996,180 -89.997,180 -89.998,180 -89.999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -89.999,-180 -89.998,-180 -89.997,-180 -89.996,-180 -89.995,-180 -89.994,-180 -89.993,-180 -89.99199999999999,-180 -89.991,-180 -89.99))"], "date_created": "Thu, 28 Jul 2022 00:00:00 GMT", "description": "An instrument suite composed of weather sensors and a set of \u0027SnowFox\u0027 Gamma Ray neutron counters used to estimate the water equivalence of snow accumulation, measured continuously between December 2017 and January 2020. ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Accumulation; Antarctica; Snow; South Pole; Surface Mass Balance", "locations": "Antarctica; Antarctica; South Pole", "north": -89.99, "nsf_funding_programs": "Antarctic Astrophysics and Geospace Sciences", "persons": "de la Pe\u00f1a, Santiago", "project_titles": "EAGER: An Operational System to Measure Surface Mass Balance Deep in the Interior of the Antarctic Ice Sheet", "projects": [{"proj_uid": "p0010360", "repository": "USAP-DC", "title": "EAGER: An Operational System to Measure Surface Mass Balance Deep in the Interior of the Antarctic Ice Sheet"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": " South Pole Weather and Accumulation Measurements 2017-2020", "uid": "601591", "west": -180.0}, {"awards": "1443126 MacAyeal, Douglas", "bounds_geometry": ["POINT(166.521 -77.936)"], "date_created": "Fri, 20 Jul 2018 00:00:00 GMT", "description": "An automatic weather station was operated on the McMurdo Ice Shelf near Pegasus Air Strip for 365 days from 24 January 2016 to 22 January 2017. The sensors consisted of temperature/RH at 2 m and 8 m (above surface), wind speed at 2 m and 8 m, 4-component radiometer, and wind direction. Time series provides averages for every 30 minutes of a 30 second sample scheme.", "east": 166.521, "geometry": ["POINT(166.521 -77.936)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrology; Ice Shelf; Snow/ice; Snow/Ice; Surface Hydrology; Surface Mass Balance; Weather Station Data", "locations": "Antarctica", "north": -77.936, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Banwell, Alison; MacAyeal, Douglas", "project_titles": "Impact of Supraglacial Lakes on Ice-Shelf Stability", "projects": [{"proj_uid": "p0000138", "repository": "USAP-DC", "title": "Impact of Supraglacial Lakes on Ice-Shelf Stability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.936, "title": "McMurdo Ice Shelf AWS data", "uid": "601106", "west": 166.521}, {"awards": "0732946 Steffen, Konrad", "bounds_geometry": ["POLYGON((-66 -66,-65.4 -66,-64.8 -66,-64.2 -66,-63.6 -66,-63 -66,-62.4 -66,-61.8 -66,-61.2 -66,-60.6 -66,-60 -66,-60 -66.4,-60 -66.8,-60 -67.2,-60 -67.6,-60 -68,-60 -68.4,-60 -68.8,-60 -69.2,-60 -69.6,-60 -70,-60.6 -70,-61.2 -70,-61.8 -70,-62.4 -70,-63 -70,-63.6 -70,-64.2 -70,-64.8 -70,-65.4 -70,-66 -70,-66 -69.6,-66 -69.2,-66 -68.8,-66 -68.4,-66 -68,-66 -67.6,-66 -67.2,-66 -66.8,-66 -66.4,-66 -66))"], "date_created": "Wed, 13 Sep 2017 00:00:00 GMT", "description": "We produce a reconstruction of surface mass balance (SMB) (in mm w.e. per year) by adjusting the 1979-2014 RACMO2 SMB to the spatial pattern of ground-penetrating radar observations and to observations of SMB from sonic height rangers.", "east": -60.0, "geometry": ["POINT(-63 -68)"], "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Larsen C Ice Shelf; Radar", "locations": "Larsen C Ice Shelf; Antarctic Peninsula; Antarctica", "north": -66.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "McGrath, Daniel; Steffen, Konrad; Kuipers Munneke, Peter", "project_titles": "IPY: Stability of Larsen C Ice Shelf in a Warming Climate", "projects": [{"proj_uid": "p0000087", "repository": "USAP-DC", "title": "IPY: Stability of Larsen C Ice Shelf in a Warming Climate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Mean surface mass balance over Larsen C ice shelf, Antarctica (1979-2014), assimilated to in situ GPR and snow height data", "uid": "601056", "west": -66.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
3-km Surface Mass and Energy Budget for the Larsen C Ice Shelf
|
1543445 |
2023-05-03 | Zhang, Jing; Luo, Liping |
Collaborative Research: Present and Projected Future Forcings on Antarctic Peninsula Glaciers and Ice Shelves using the Weather Forecasting and Research (WRF) Model |
This dataset includes the 3-km resolution budget terms of surface mass balance (SMB) and surface energy budget (SEB) for the Larsen C Ice Shelf during the melting season of 2017-18. The variables include the SMB budget terms of net surface mass balance, precipitation, runoff, blowing snow erosion, surface sublimation, and blowing snow sublimation, and the SEB budget terms of net surface energy budget, downwelling and upwelling longwave radiation, surface absorbed shortwave radiation, ground heat flux, and sensible / latent heat flux. | ["POLYGON((-70.9 -65,-69.51 -65,-68.12 -65,-66.73 -65,-65.34 -65,-63.95 -65,-62.56 -65,-61.17 -65,-59.78 -65,-58.39 -65,-57 -65,-57 -65.5,-57 -66,-57 -66.5,-57 -67,-57 -67.5,-57 -68,-57 -68.5,-57 -69,-57 -69.5,-57 -70,-58.39 -70,-59.78 -70,-61.17 -70,-62.56 -70,-63.95 -70,-65.34 -70,-66.73 -70,-68.12 -70,-69.51 -70,-70.9 -70,-70.9 -69.5,-70.9 -69,-70.9 -68.5,-70.9 -68,-70.9 -67.5,-70.9 -67,-70.9 -66.5,-70.9 -66,-70.9 -65.5,-70.9 -65))"] | ["POINT(-63.95 -67.5)"] | false | false |
Remotely-sensed iceberg geometries and meltwater fluxes
|
1643455 1933764 |
2023-04-06 | Enderlin, Ellyn; Dickson, Adam; Miller, Emily; Dryak, Mariama; Oliver, Caitlin; Aberle, Rainey |
Antarctic Submarine Melt Variability from Remote Sensing of Icebergs |
This dataset includes manually-extracted iceberg geometries and meltwater fluxes from 2011-2022 WorldView digital elevation model time series for 15 study sites around Antarctica. Each file contains the coordinates, median surface elevation, density, volume, surface area, draft, and submerged area estimated for an iceberg on two different observation dates (specified in the file name). The submarine meltwater flux for each iceberg, calculated as the volume change over time corrected for surface mass balance processes and creep thinning between observation dates, is provided for each iceberg. Dates listed in file names are in YYYYMMDDhhmmss format. Site abbreviations in file names are as follows: BG = Blanchard Glacier, CG = Cadman Glacier, FG = Ferrigno Glacier, FI = Filchner Ice Shelf, HG = Heim Glacier, LA = Edgeworth Glacier (Larsen A tributary), LB = Cadman Glacier (Larsen B tributary), LG = Leonardo Glacier, MI = Mertz Ice Tongue, PT = Polar Times, RI = Ronne Ice Shelf, SG = Seller Glacier, TG = Thwaites Glacier, TI = Totten Ice Shelf, and WG = Widdowson Glacier. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Crane Glacier centerline observations and modeling results
|
1933764 |
2022-10-24 | Aberle, Rainey; Enderlin, Ellyn; Marshall, Hans-Peter; Kopera, Michal; Meehan, Tate |
Antarctic Submarine Melt Variability from Remote Sensing of Icebergs |
This dataset contains observed and modeled conditions along the Crane Glacier centerline for ~1994—2100. Observations include centerline (cl) coordinates, downscaled RACMO climate variables (runoff, snowfall, snowmelt, and surface mass balance), bed elevations (b), surface elevations (h), glacier width (W), calving front positions (xcf), and surface speeds (U) when available for the 1994—2019 period. Modeling results include glacier centerline geometry, speed, glacier mass discharge (Q_gl), and calving front and grounding line positions (x_cf and x_gl) under different future climate scenarios with varying surface mass balance (SMB), ocean thermal forcing (FT), SMB with potential feedbacks associated with enhanced surface melt water discharge and plume strengthening (SMB_enh), and concurrent SMB_enh and FT perturbations (SMB_enh_FT). Data are in “.mat” format, which can be read using MATLAB’s “load” function or using Python with the Scipy “scipy.io.loadmat” function. | ["POLYGON((-63.1 -65.2,-62.99 -65.2,-62.88 -65.2,-62.77 -65.2,-62.660000000000004 -65.2,-62.55 -65.2,-62.44 -65.2,-62.33 -65.2,-62.22 -65.2,-62.11 -65.2,-62 -65.2,-62 -65.24000000000001,-62 -65.28,-62 -65.32,-62 -65.36,-62 -65.4,-62 -65.44,-62 -65.47999999999999,-62 -65.52,-62 -65.56,-62 -65.6,-62.11 -65.6,-62.22 -65.6,-62.33 -65.6,-62.44 -65.6,-62.55 -65.6,-62.660000000000004 -65.6,-62.77 -65.6,-62.88 -65.6,-62.99 -65.6,-63.1 -65.6,-63.1 -65.56,-63.1 -65.52,-63.1 -65.47999999999999,-63.1 -65.44,-63.1 -65.4,-63.1 -65.36,-63.1 -65.32,-63.1 -65.28,-63.1 -65.24000000000001,-63.1 -65.2))"] | ["POINT(-62.55 -65.4)"] | false | false |
South Pole Weather and Accumulation Measurements 2017-2020
|
1654922 |
2022-07-28 | de la Peña, Santiago |
EAGER: An Operational System to Measure Surface Mass Balance Deep in the Interior of the Antarctic Ice Sheet |
An instrument suite composed of weather sensors and a set of 'SnowFox' Gamma Ray neutron counters used to estimate the water equivalence of snow accumulation, measured continuously between December 2017 and January 2020. | ["POLYGON((-180 -89.99,-144 -89.99,-108 -89.99,-72 -89.99,-36 -89.99,0 -89.99,36 -89.99,72 -89.99,108 -89.99,144 -89.99,180 -89.99,180 -89.991,180 -89.99199999999999,180 -89.993,180 -89.994,180 -89.995,180 -89.996,180 -89.997,180 -89.998,180 -89.999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -89.999,-180 -89.998,-180 -89.997,-180 -89.996,-180 -89.995,-180 -89.994,-180 -89.993,-180 -89.99199999999999,-180 -89.991,-180 -89.99))"] | ["POINT(0 -89.999)"] | false | false |
McMurdo Ice Shelf AWS data
|
1443126 |
2018-07-20 | Banwell, Alison; MacAyeal, Douglas |
Impact of Supraglacial Lakes on Ice-Shelf Stability |
An automatic weather station was operated on the McMurdo Ice Shelf near Pegasus Air Strip for 365 days from 24 January 2016 to 22 January 2017. The sensors consisted of temperature/RH at 2 m and 8 m (above surface), wind speed at 2 m and 8 m, 4-component radiometer, and wind direction. Time series provides averages for every 30 minutes of a 30 second sample scheme. | ["POINT(166.521 -77.936)"] | ["POINT(166.521 -77.936)"] | false | false |
Mean surface mass balance over Larsen C ice shelf, Antarctica (1979-2014), assimilated to in situ GPR and snow height data
|
0732946 |
2017-09-13 | McGrath, Daniel; Steffen, Konrad; Kuipers Munneke, Peter |
IPY: Stability of Larsen C Ice Shelf in a Warming Climate |
We produce a reconstruction of surface mass balance (SMB) (in mm w.e. per year) by adjusting the 1979-2014 RACMO2 SMB to the spatial pattern of ground-penetrating radar observations and to observations of SMB from sonic height rangers. | ["POLYGON((-66 -66,-65.4 -66,-64.8 -66,-64.2 -66,-63.6 -66,-63 -66,-62.4 -66,-61.8 -66,-61.2 -66,-60.6 -66,-60 -66,-60 -66.4,-60 -66.8,-60 -67.2,-60 -67.6,-60 -68,-60 -68.4,-60 -68.8,-60 -69.2,-60 -69.6,-60 -70,-60.6 -70,-61.2 -70,-61.8 -70,-62.4 -70,-63 -70,-63.6 -70,-64.2 -70,-64.8 -70,-65.4 -70,-66 -70,-66 -69.6,-66 -69.2,-66 -68.8,-66 -68.4,-66 -68,-66 -67.6,-66 -67.2,-66 -66.8,-66 -66.4,-66 -66))"] | ["POINT(-63 -68)"] | false | false |