{"dp_type": "Dataset", "free_text": "Styx Glacier"}
[{"awards": "1643716 Buizert, Christo", "bounds_geometry": ["POLYGON((-180 -67,-144 -67,-108 -67,-72 -67,-36 -67,0 -67,36 -67,72 -67,108 -67,144 -67,180 -67,180 -69.3,180 -71.6,180 -73.9,180 -76.2,180 -78.5,180 -80.8,180 -83.1,180 -85.4,180 -87.7,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.7,-180 -85.4,-180 -83.1,-180 -80.8,-180 -78.5,-180 -76.2,-180 -73.9,-180 -71.6,-180 -69.3,-180 -67))"], "date_created": "Mon, 22 May 2023 00:00:00 GMT", "description": "We have reconstructed the atmospheric N2O mole fraction and its isotopic composition by combining data from ice cores, firn air, and atmospheric samples. The mole fraction reconstruction extends back to 1000 CE using ice cores, firn air, and atmospheric sampling; and the isotopic reconstruction extends back to 1900 CE using only firn air data. We have incorporated both newly measured and previously published data. We present new data for the mole fraction, d15Nbulk, d18O, and d15NSP values from the Styx (East Antarctica) firn air, and mole fraction from the North Greenland Eemian Ice drilling Project (NEEM) firn air. We have used published records from the Styx and NEEM ice cores, direct atmospheric measurements from the NOAA global sampling network, and firn air data, giving a total of 11 sites for N2O mole fraction, 12 sites for d15Nbulk, 11 sites for d18O, and 8 sites for d15NSP values.\r\n", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctic; Antarctica; Anthropogenic Emission; Atmosphere; Greenhouse Gas; Greenland; Ice Core Data; Nitrification And Denitrification Processes; Nitrous Oxide; Site-Specific 15N Isotopomer; Styx Glacier", "locations": "Antarctic; Greenland; Antarctica; Styx Glacier", "north": -67.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Ghosh, Sambit; Toyoda, Sakae ; Buizert, Christo ; Langenfelds, Ray L ; Yoshida, Naohiro ; Joong Kim, Seong; Ahn, Jinho ; Etheridge, David", "project_titles": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability", "projects": [{"proj_uid": "p0010341", "repository": "USAP-DC", "title": "Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Concentration and isotopic composition of atmospheric N2O over the last century", "uid": "601693", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Concentration and isotopic composition of atmospheric N2O over the last century
|
1643716 |
2023-05-22 | Ghosh, Sambit; Toyoda, Sakae ; Buizert, Christo ; Langenfelds, Ray L ; Yoshida, Naohiro ; Joong Kim, Seong; Ahn, Jinho ; Etheridge, David |
Collaborative Research: Reconstructing Carbon-14 of Atmospheric Carbon Monoxide from Law Dome, Antarctica to Constrain Long-Term Hydroxyl Radical Variability |
We have reconstructed the atmospheric N2O mole fraction and its isotopic composition by combining data from ice cores, firn air, and atmospheric samples. The mole fraction reconstruction extends back to 1000 CE using ice cores, firn air, and atmospheric sampling; and the isotopic reconstruction extends back to 1900 CE using only firn air data. We have incorporated both newly measured and previously published data. We present new data for the mole fraction, d15Nbulk, d18O, and d15NSP values from the Styx (East Antarctica) firn air, and mole fraction from the North Greenland Eemian Ice drilling Project (NEEM) firn air. We have used published records from the Styx and NEEM ice cores, direct atmospheric measurements from the NOAA global sampling network, and firn air data, giving a total of 11 sites for N2O mole fraction, 12 sites for d15Nbulk, 11 sites for d18O, and 8 sites for d15NSP values. | ["POLYGON((-180 -67,-144 -67,-108 -67,-72 -67,-36 -67,0 -67,36 -67,72 -67,108 -67,144 -67,180 -67,180 -69.3,180 -71.6,180 -73.9,180 -76.2,180 -78.5,180 -80.8,180 -83.1,180 -85.4,180 -87.7,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.7,-180 -85.4,-180 -83.1,-180 -80.8,-180 -78.5,-180 -76.2,-180 -73.9,-180 -71.6,-180 -69.3,-180 -67))"] | ["POINT(0 -89.999)"] | false | false |