{"dp_type": "Dataset", "free_text": "Polychaete"}
[{"awards": "1443680 Smith, Craig", "bounds_geometry": ["POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64))"], "date_created": "Tue, 31 Dec 2019 00:00:00 GMT", "description": "Sediment macrofaunal data collected by megacore (10-cm diameter sample tubes) along a down-fjord transect from inner Andvord Bay out onto the open continental shelf on the West Antarctic Peninsula. Sediment core samples from 0 - 10 cm depths were fixed in 4% formaldehyde, sieved on a 300 micron seive, and sorted with a dissecting microscope. ", "east": -62.0, "geometry": ["POINT(-64 -64.5)"], "keywords": "Abundance; Andvord Bay; Antarctica; Antarctic Peninsula; Biota; Fjord; LMG1510; Marine Sediments; Oceans; Polychaete; Polychaete Family Richness; R/v Laurence M. Gould; Sediment Core Data; Sediment Macrofauna", "locations": "Antarctica; Andvord Bay; Antarctic Peninsula", "north": -64.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Smith, Craig", "project_titles": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)", "projects": [{"proj_uid": "p0010010", "repository": "USAP-DC", "title": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "FjordEco", "south": -65.0, "title": "Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf", "uid": "601236", "west": -66.0}, {"awards": "0338087 Scheltema, Rudolf", "bounds_geometry": ["POLYGON((-70 -53,-68.4 -53,-66.8 -53,-65.2 -53,-63.6 -53,-62 -53,-60.4 -53,-58.8 -53,-57.2 -53,-55.6 -53,-54 -53,-54 -54.5,-54 -56,-54 -57.5,-54 -59,-54 -60.5,-54 -62,-54 -63.5,-54 -65,-54 -66.5,-54 -68,-55.6 -68,-57.2 -68,-58.8 -68,-60.4 -68,-62 -68,-63.6 -68,-65.2 -68,-66.8 -68,-68.4 -68,-70 -68,-70 -66.5,-70 -65,-70 -63.5,-70 -62,-70 -60.5,-70 -59,-70 -57.5,-70 -56,-70 -54.5,-70 -53))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research.", "east": -54.0, "geometry": ["POINT(-62 -60.5)"], "keywords": "Antarctica; Biota; Oceans; R/v Laurence M. Gould; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -53.0, "nsf_funding_programs": null, "persons": "Scheltema, Rudolf", "project_titles": "Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "projects": [{"proj_uid": "p0000189", "repository": "USAP-DC", "title": "Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.0, "title": "Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "uid": "600035", "west": -70.0}, {"awards": "0439906 Koch, Paul", "bounds_geometry": ["POLYGON((162 -72,162.6 -72,163.2 -72,163.8 -72,164.4 -72,165 -72,165.6 -72,166.2 -72,166.8 -72,167.4 -72,168 -72,168 -72.6,168 -73.2,168 -73.8,168 -74.4,168 -75,168 -75.6,168 -76.2,168 -76.8,168 -77.4,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.4,162 -76.8,162 -76.2,162 -75.6,162 -75,162 -74.4,162 -73.8,162 -73.2,162 -72.6,162 -72))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "During previous NSF-sponsored research, the PI\u0027s discovered that southern elephant seal colonies once existed along the Victoria Land coast (VLC) of Antarctica, a region where they are no longer observed. Molted seal skin and hair occur along 300 km of coastline, more than 1000 km from any extant colony. The last record of a seal at a former colony site is at ~A.D. 1600. Because abandonment occurred prior to subantarctic sealing, disappearance of the VLC colony probably was due to environmental factors, possibly cooling and encroachment of land-fast, perennial sea ice that made access to haul-out sites difficult. The record of seal inhabitation along the VLC, therefore, has potential as a proxy for climate change. Elephant seals are a predominantly subantarctic species with circumpolar distribution. Genetic studies have revealed significant differentiation among populations, particularly with regard to that at Macquarie I., which is the extant population nearest to the abandoned VLC colony. Not only is the Macquarie population unique genetically, but it is has undergone unexplained decline of 2%/yr over the last 50 years3. In a pilot study, genetic analyses showed a close relationship between the VLC seals and those at Macquarie I. An understanding of the relationship between the two populations, as well as of the environmental pressures that led to the demise of the VLC colonies, will provide a better understanding of present-day population genetic structure, the effect of environmental change on seal populations, and possibly the reasons underlying the modern decline at Macquarie Island. This project addresses several key research problems: (1) Why did elephant seals colonize and then abandon the VLC? (2) What does the elephant seal record reveal about Holocene climate change and sea-ice conditions? (3) What were the foraging strategies of the seals and did these strategies change over time as climate varied? (4) How does the genetic structure of the VLC seals relate to extant populations? (5) How did genetic diversity change over time and with colony decline? (6) Using ancient samples to estimate mtDNA mutation rates, what can be learned about VLC population dynamics over time? (7) What was the ecological relationship between elephant seals and Adelie penguins that occupied the same sites, but apparently at different times? The proposed work includes the professional training of young researchers and incorporation of data into graduate and undergraduate courses.\n\nBecause of extreme isolation of the Antarctic continent since the \nEarly Oligocene, one expects a unique invertebrate benthic fauna with \na high degree of endemism. Yet some invertebrate taxa that constitute \nimportant ecological components of sedimentary benthic communities \ninclude more than 40 percent non-endemic species (e.g., benthic \npolychaetes). To account for non-endemic species, intermittent genetic \nexchange must occur between Antarctic and other (e.g. South American) \npopulations. The most likely mechanism for such gene flow, at least \nfor in-faunal and mobile macrobenthos, is dispersal of planktonic \nlarvae across the sub- Antarctic and Antarctic polar fronts. To test \nfor larval dispersal as a mechanism of maintaining genetic continuity \nacross polar fronts, the scientists propose to (1) take plankton \nsamples along transects across Drake passage during both the austral \nsummer and winter seasons while concurrently collecting the \nappropriate hydrographic data. Such data will help elucidate the \nhydrographic mechanisms that allow dispersal across Drake Passage. \nUsing a molecular phylogenetic approach, they will (2) compare \nseemingly identical adult forms from Antarctic and South America \ncontinents to identify genetic breaks, historical gene flow, and \ncontrol for the presence of cryptic species. (3) Similar molecular \ntools will be used to relate planktonic larvae to their adult forms. \nThrough this procedure, they propose to link the larval forms \nrespectively to their Antarctic or South America origins. The proposed \nwork builds on previous research that provides the basis for this \neffort to develop a synthetic understanding of historical gene flow \nand present day dispersal mechanism in South American/Drake Passage/ \nAntarctic Peninsular region. Furthermore, this work represents one of \nthe first attempts to examine recent gene flow in Antarctic benthic \ninvertebrates. Graduate students and a postdoctoral fellow will be \ntrained during this research\n", "east": 168.0, "geometry": ["POINT(165 -75)"], "keywords": "Biota; Isotope; Penguin; Ross Sea; Seals; Southern Ocean", "locations": "Southern Ocean; Ross Sea", "north": -72.0, "nsf_funding_programs": null, "persons": "Koch, Paul", "project_titles": "Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "projects": [{"proj_uid": "p0000533", "repository": "USAP-DC", "title": "Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "uid": "600041", "west": 162.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Sediment macrofaunal abundance and family richness from inner Andvord Bay to the open continental shelf
|
1443680 |
2019-12-31 | Smith, Craig |
Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco) |
Sediment macrofaunal data collected by megacore (10-cm diameter sample tubes) along a down-fjord transect from inner Andvord Bay out onto the open continental shelf on the West Antarctic Peninsula. Sediment core samples from 0 - 10 cm depths were fixed in 4% formaldehyde, sieved on a 300 micron seive, and sorted with a dissecting microscope. | ["POLYGON((-66 -64,-65.6 -64,-65.2 -64,-64.8 -64,-64.4 -64,-64 -64,-63.6 -64,-63.2 -64,-62.8 -64,-62.4 -64,-62 -64,-62 -64.1,-62 -64.2,-62 -64.3,-62 -64.4,-62 -64.5,-62 -64.6,-62 -64.7,-62 -64.8,-62 -64.9,-62 -65,-62.4 -65,-62.8 -65,-63.2 -65,-63.6 -65,-64 -65,-64.4 -65,-64.8 -65,-65.2 -65,-65.6 -65,-66 -65,-66 -64.9,-66 -64.8,-66 -64.7,-66 -64.6,-66 -64.5,-66 -64.4,-66 -64.3,-66 -64.2,-66 -64.1,-66 -64))"] | ["POINT(-64 -64.5)"] | false | false |
Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates
|
0338087 |
2010-01-01 | Scheltema, Rudolf |
Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates |
Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research. | ["POLYGON((-70 -53,-68.4 -53,-66.8 -53,-65.2 -53,-63.6 -53,-62 -53,-60.4 -53,-58.8 -53,-57.2 -53,-55.6 -53,-54 -53,-54 -54.5,-54 -56,-54 -57.5,-54 -59,-54 -60.5,-54 -62,-54 -63.5,-54 -65,-54 -66.5,-54 -68,-55.6 -68,-57.2 -68,-58.8 -68,-60.4 -68,-62 -68,-63.6 -68,-65.2 -68,-66.8 -68,-68.4 -68,-70 -68,-70 -66.5,-70 -65,-70 -63.5,-70 -62,-70 -60.5,-70 -59,-70 -57.5,-70 -56,-70 -54.5,-70 -53))"] | ["POINT(-62 -60.5)"] | false | false |
Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change
|
0439906 |
2010-01-01 | Koch, Paul |
Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change |
During previous NSF-sponsored research, the PI's discovered that southern elephant seal colonies once existed along the Victoria Land coast (VLC) of Antarctica, a region where they are no longer observed. Molted seal skin and hair occur along 300 km of coastline, more than 1000 km from any extant colony. The last record of a seal at a former colony site is at ~A.D. 1600. Because abandonment occurred prior to subantarctic sealing, disappearance of the VLC colony probably was due to environmental factors, possibly cooling and encroachment of land-fast, perennial sea ice that made access to haul-out sites difficult. The record of seal inhabitation along the VLC, therefore, has potential as a proxy for climate change. Elephant seals are a predominantly subantarctic species with circumpolar distribution. Genetic studies have revealed significant differentiation among populations, particularly with regard to that at Macquarie I., which is the extant population nearest to the abandoned VLC colony. Not only is the Macquarie population unique genetically, but it is has undergone unexplained decline of 2%/yr over the last 50 years3. In a pilot study, genetic analyses showed a close relationship between the VLC seals and those at Macquarie I. An understanding of the relationship between the two populations, as well as of the environmental pressures that led to the demise of the VLC colonies, will provide a better understanding of present-day population genetic structure, the effect of environmental change on seal populations, and possibly the reasons underlying the modern decline at Macquarie Island. This project addresses several key research problems: (1) Why did elephant seals colonize and then abandon the VLC? (2) What does the elephant seal record reveal about Holocene climate change and sea-ice conditions? (3) What were the foraging strategies of the seals and did these strategies change over time as climate varied? (4) How does the genetic structure of the VLC seals relate to extant populations? (5) How did genetic diversity change over time and with colony decline? (6) Using ancient samples to estimate mtDNA mutation rates, what can be learned about VLC population dynamics over time? (7) What was the ecological relationship between elephant seals and Adelie penguins that occupied the same sites, but apparently at different times? The proposed work includes the professional training of young researchers and incorporation of data into graduate and undergraduate courses. Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/ Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research | ["POLYGON((162 -72,162.6 -72,163.2 -72,163.8 -72,164.4 -72,165 -72,165.6 -72,166.2 -72,166.8 -72,167.4 -72,168 -72,168 -72.6,168 -73.2,168 -73.8,168 -74.4,168 -75,168 -75.6,168 -76.2,168 -76.8,168 -77.4,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.4,162 -76.8,162 -76.2,162 -75.6,162 -75,162 -74.4,162 -73.8,162 -73.2,162 -72.6,162 -72))"] | ["POINT(165 -75)"] | false | false |