{"dp_type": "Dataset", "free_text": "LANDSAT"}
[{"awards": null, "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 13 Oct 2023 00:00:00 GMT", "description": "Blue-ice areas (BIAs) and their geographical distribution in Antarctica were mapped using Landsat-7 ETM+ images with 15 m spatial resolution obtained during the 1999\u20132003 austral summers and covering the area north of 82.5\u00b0 S, and a snow grain-size image of the MODIS-based Mosaic of Antarctica (MOA) dataset with 125 m grid spacing acquired during the 2003/04 austral summer from 82.5\u00b0S to the South Pole. A map of BIAs was created with algorithms of thresholds based on band ratio and reflectance for ETM+ data and thresholds based on snow grain size for the MOA dataset. The underlying principle is that blue ice can be separated from snow or rock by their spectral discrepancies and by different grain sizes of snow and ice. We estimate the total area of BIAs in Antarctica during the data acquisition period is 234 549 km2, or 1.67% of the area of the continent. Blue ice is scattered widely over the continent but is generally located in coastal or mountainous regions. The BIA dataset presented in this study is the first map covering the entire Antarctic continent sourced solely from ETM+ and MODIS data. Support by National Natural Science Foundation of China (grant No. 41106157) and NASA grant NNX10AL42G (nsidc0549_hui_V0).", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Blue Ice; GIS; Glaciology; LANDSAT; MODIS; Remote Sensing; Snow/ice; Snow/Ice", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Hui, Fengming; Scambos, Ted", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -90.0, "title": "Distribution of blue ice areas in Antarctica derived from Landsat ETM+ and Modis images", "uid": "601742", "west": -180.0}, {"awards": "1744584 Klein, Andrew", "bounds_geometry": ["POLYGON((-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-60 -61.8,-60 -62.6,-60 -63.4,-60 -64.2,-60 -65,-60 -65.8,-60 -66.6,-60 -67.4,-60 -68.2,-60 -69,-61 -69,-62 -69,-63 -69,-64 -69,-65 -69,-66 -69,-67 -69,-68 -69,-69 -69,-70 -69,-70 -68.2,-70 -67.4,-70 -66.6,-70 -65.8,-70 -65,-70 -64.2,-70 -63.4,-70 -62.6,-70 -61.8,-70 -61))"], "date_created": "Wed, 11 Jan 2023 00:00:00 GMT", "description": "This dataset a CSV file containing the percentages of water (non-land) pixels within various sized buffers (100, 300, 3,000 and 10,000 m radii) buffers around fifteen sampling sites that were classified as being either Sea Ice or Cloud in the Antarctic Landsat Views collection housed within Esri\u2019s curated Living Atlas of the world which is a collection of ready-to-use global geographic content. The encompass a portion of the Western Antarctic Peninsula. This dataset was developed in support of projects ANT-1744550, -744570, -1744584, and -1744602.", "east": -60.0, "geometry": ["POINT(-65 -65)"], "keywords": "Antarctica; Antarctic Peninsula; GIS; LANDSAT; LMG1904; Remote Sensing; R/v Laurence M. Gould", "locations": "Antarctica; Antarctic Peninsula", "north": -61.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Klein, Andrew", "project_titles": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity", "projects": [{"proj_uid": "p0010104", "repository": "USAP-DC", "title": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.0, "title": "Landsat Sea Ice/Cloud classifications surrounding project study sites", "uid": "601654", "west": -70.0}, {"awards": "1738992 Pettit, Erin C", "bounds_geometry": ["POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))"], "date_created": "Mon, 11 Oct 2021 00:00:00 GMT", "description": "This dataset includes GeoTiffs of two-year averages of ice flow velocity (including x- and y-components and flow speed) and longitudinal, transverse, and shear strain rates for the Thwaites Eastern Ice Shelf (TEIS) from 2001-2020. The grids were derived from feature tracking on MODIS, Landsat-7, and Landsat-8 imagery. Each pixel in a grid represents the median value of a stack of all available pixels for each time period. Data are gridded at a 500 m spatial resolution in a polar stereographic (EPSG:3031) projection. Speed units are m/day and strain rates are in units of /day. In addition, we provide videos of each variable (excluding x- and y-velocity components) placed alongside a MODIS image of the same extent and from around the same time to provide context. In addition to the variables noted above, we include videos for flow direction (in degrees from grid north in an EPSG:3031 projection) and a zoomed-in version of flow direction, which were calculated from the provided grids.", "east": -104.0, "geometry": ["POINT(-109 -75)"], "keywords": "Antarctica; Glaciology; Ice Shelf; Ice Velocity; Strain Rate; Thwaites Glacier", "locations": "Antarctica; Thwaites Glacier", "north": -74.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Alley, Karen; Wild, Christian; Scambos, Ted; Muto, Atsu; Pettit, Erin; Truffer, Martin; Wallin, Bruce; Klinger, Marin", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -76.0, "title": "Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020", "uid": "601478", "west": -114.0}, {"awards": "1643715 Moussavi, Mahsa Sadat", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 10 Dec 2020 00:00:00 GMT", "description": "This dataset contains extents and depths of supraglacial lakes on ice shelves across the Antarctic ice sheet, mapped from Landsat 8 imagery collected over the 2013-2020 period. ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Landsat-8; Satellite Imagery; Supraglacial Lake", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Moussavi, Mahsa; Pope, Allen; Trusel, Luke; Abdalati, Waleed; Halberstadt, Anna Ruth", "project_titles": "Collaborative Research: Water on the Antarctic Ice Sheet: Quantifying Surface Melt and Mapping Supraglacial Lakes", "projects": [{"proj_uid": "p0010088", "repository": "USAP-DC", "title": "Collaborative Research: Water on the Antarctic Ice Sheet: Quantifying Surface Melt and Mapping Supraglacial Lakes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Supraglacial Lakes in Antarctica", "uid": "601401", "west": -180.0}, {"awards": "0944248 MacAyeal, Douglas", "bounds_geometry": ["POLYGON((-63 -63,-62.2 -63,-61.4 -63,-60.6 -63,-59.8 -63,-59 -63,-58.2 -63,-57.4 -63,-56.6 -63,-55.8 -63,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-55 -65.4,-55 -65.8,-55 -66.2,-55 -66.6,-55 -67,-55.8 -67,-56.6 -67,-57.4 -67,-58.2 -67,-59 -67,-59.8 -67,-60.6 -67,-61.4 -67,-62.2 -67,-63 -67,-63 -66.6,-63 -66.2,-63 -65.8,-63 -65.4,-63 -65,-63 -64.6,-63 -64.2,-63 -63.8,-63 -63.4,-63 -63))"], "date_created": "Tue, 29 Apr 2014 00:00:00 GMT", "description": "This data set addresses why surface melt water lakes on ice shelves and ice sheets are notably influential in triggering ice-shelf break-up and modulating seasonal ice flow, and are thus principle avenues by which environmental change can be transmitted to the ice sheets of Antarctica and Greenland. A comparative analysis is performed of lake geometry and derived depth (using Landsat image reflectance) in two distinct regions, one a collapsing ice shelf and the other an ablation zone of a land terminating ice sheet, to better characterize the range of surface lake variability.", "east": -55.0, "geometry": ["POINT(-59 -65)"], "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Larsen B Ice Shelf; Sample/collection Description; Sample/Collection Description; Supraglacial Meltwater", "locations": "Antarctic Peninsula; Larsen B Ice Shelf; Antarctica", "north": -63.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "MacAyeal, Douglas", "project_titles": "Model Studies of Surface Water Behavior on Ice Shelves", "projects": [{"proj_uid": "p0000052", "repository": "USAP-DC", "title": "Model Studies of Surface Water Behavior on Ice Shelves"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.0, "title": "Standing Water Depth on Larsen B Ice Shelf", "uid": "609584", "west": -63.0}, {"awards": "0739654 Catania, Ginny", "bounds_geometry": ["POLYGON((-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-103 -74,-102 -74,-101 -74,-100 -74,-100 -74.2,-100 -74.4,-100 -74.6,-100 -74.8,-100 -75,-100 -75.2,-100 -75.4,-100 -75.6,-100 -75.8,-100 -76,-101 -76,-102 -76,-103 -76,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-110 -75.8,-110 -75.6,-110 -75.4,-110 -75.2,-110 -75,-110 -74.8,-110 -74.6,-110 -74.4,-110 -74.2,-110 -74))"], "date_created": "Wed, 30 May 2012 00:00:00 GMT", "description": "This data set provides a coastline history of the eastern Amundsen Sea Embayment and terminus histories of its outlet glaciers derived from those coastlines. These outlet glaciers include Smith, Haynes, Thwaites, and Pine Island Glaciers. The coastlines were derived from detailed tracing of Landsat imagery between late 1972 and late 2011 (at a scale of 1:50,000). The data set also uses some additional data from other sources. The terminus histories are calculated as the intersections between these coastlines and 1996 flowlines.\n\nData are available via FTP in ESRI shapefile and comma separated value (.csv) formats.", "east": -100.0, "geometry": ["POINT(-105 -75)"], "keywords": "Amundsen Sea; Antarctica; Climate Change; Coastline; GIS Data; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Satellite Data Interpretation", "locations": "Antarctica; Amundsen Sea", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Macgregor, Joseph A.; Catania, Ginny; Markowski, Michael; Andrews, Alan G.", "project_titles": "Collaborative Research: Ice-flow history of the Thwaites Glacier, West Antarctica", "projects": [{"proj_uid": "p0000143", "repository": "USAP-DC", "title": "Collaborative Research: Ice-flow history of the Thwaites Glacier, West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.0, "title": "Coastal and Terminus History of the Eastern Amundsen Sea Embayment, West Antarctica, 1972 - 2011", "uid": "609522", "west": -110.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -62,180 -64,180 -66,180 -68,180 -70,180 -72,180 -74,180 -76,180 -78,180 -80,144 -80,108 -80,72 -80,36 -80,0 -80,-36 -80,-72 -80,-108 -80,-144 -80,-180 -80,-180 -78,-180 -76,-180 -74,-180 -72,-180 -70,-180 -68,-180 -66,-180 -64,-180 -62,-180 -60))"], "date_created": "Sun, 20 Feb 2011 00:00:00 GMT", "description": "This data set provides grounding line and hydrostatic line locations for the Antarctic coastline and islands around Antarctica. The data are derived using customized software to combine data from Landsat-7 imagery and Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry, which were primarily collected between 1999 to 2003. The data set also includes elevations along each line, selected from six candidate digital elevation models. The data were developed as part of the Antarctic Surface Accumulation and Ice Discharge (ASAID) project. \r\n\r\nFunding trough NASA grant 509496.02.08.01.81\r\nData are provided in both ASCII text (.txt) and shapefile (.shp, .dbf, .shx) formats.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; ASAID; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Grounding Line Hydrostatic Line; Oceans", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bindschadler, Robert; Choi, Hyeungu", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -80.0, "title": "High-resolution Image-derived Grounding and Hydrostatic Lines for the Antarctic Ice Sheet", "uid": "609489", "west": -180.0}, {"awards": "0225992 Fahnestock, Mark; 0125570 Scambos, Ted", "bounds_geometry": ["POLYGON((124.4345 -80.77546,124.443718 -80.77546,124.452936 -80.77546,124.462154 -80.77546,124.471372 -80.77546,124.48059 -80.77546,124.489808 -80.77546,124.499026 -80.77546,124.508244 -80.77546,124.517462 -80.77546,124.52668 -80.77546,124.52668 -80.776922,124.52668 -80.778384,124.52668 -80.779846,124.52668 -80.781308,124.52668 -80.78277,124.52668 -80.784232,124.52668 -80.785694,124.52668 -80.787156,124.52668 -80.788618,124.52668 -80.79008,124.517462 -80.79008,124.508244 -80.79008,124.499026 -80.79008,124.489808 -80.79008,124.48059 -80.79008,124.471372 -80.79008,124.462154 -80.79008,124.452936 -80.79008,124.443718 -80.79008,124.4345 -80.79008,124.4345 -80.788618,124.4345 -80.787156,124.4345 -80.785694,124.4345 -80.784232,124.4345 -80.78277,124.4345 -80.781308,124.4345 -80.779846,124.4345 -80.778384,124.4345 -80.776922,124.4345 -80.77546))"], "date_created": "Thu, 05 Oct 2006 00:00:00 GMT", "description": "The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other during the period of December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are 1) to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and 2) to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on the past terrestrial climate or on processes active on other planets.\n\nSnow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km\u003csup\u003e2\u003c/sup\u003e of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glazed surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas.\n\nThis data set contains automated weather station (AWS) data from two sites. The Mac site was oriented on the rough sastrugi-covered windward face and the Zoe site was on the glazed leeward face. The AWSs collected data throughout the year from 16 January 2004 to 17 November 2004. Investigators received data from the two field sites via the ARGOS Satellite System (http://www.argosinc.com/). Data are provided in space-delimited ASCII text format and are available via FTP.", "east": 124.52668, "geometry": ["POINT(124.48059 -80.78277)"], "keywords": "Antarctica; Atmosphere; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Snow/ice; Snow/Ice", "locations": "Antarctica; East Antarctic Plateau", "north": -80.77546, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fahnestock, Mark; Scambos, Ted; Haran, Terry; Bauer, Rob", "project_titles": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "projects": [{"proj_uid": "p0000587", "repository": "USAP-DC", "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.79008, "title": "AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "uid": "609283", "west": 124.4345}, {"awards": "0125276 Albert, Mary", "bounds_geometry": ["POLYGON((124.0218 -80.5304,124.22264 -80.5304,124.42348 -80.5304,124.62432 -80.5304,124.82516 -80.5304,125.026 -80.5304,125.22684 -80.5304,125.42768 -80.5304,125.62852 -80.5304,125.82936 -80.5304,126.0302 -80.5304,126.0302 -80.55538,126.0302 -80.58036,126.0302 -80.60534,126.0302 -80.63032,126.0302 -80.6553,126.0302 -80.68028,126.0302 -80.70526,126.0302 -80.73024,126.0302 -80.75522,126.0302 -80.7802,125.82936 -80.7802,125.62852 -80.7802,125.42768 -80.7802,125.22684 -80.7802,125.026 -80.7802,124.82516 -80.7802,124.62432 -80.7802,124.42348 -80.7802,124.22264 -80.7802,124.0218 -80.7802,124.0218 -80.75522,124.0218 -80.73024,124.0218 -80.70526,124.0218 -80.68028,124.0218 -80.6553,124.0218 -80.63032,124.0218 -80.60534,124.0218 -80.58036,124.0218 -80.55538,124.0218 -80.5304))"], "date_created": "Sat, 10 Jun 2006 00:00:00 GMT", "description": "The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other in December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate or on processes active on other planets.\n\nSnow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km\u003csup\u003e2\u003c/sup\u003e of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glaze surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas.\n\nThis data set contains ground penetrating radar (GPR) data showing surface morphology and internal layering structure along with global positioning system (GPS) data collected within an area of 60 km\u003csup\u003e2\u003c/sup\u003e. GPS data are provided in space-delimited ASCII text Microsoft Excel formats, while GPR data are in JPEG format. Data are available via FTP.", "east": 126.0302, "geometry": ["POINT(125.026 -80.6553)"], "keywords": "Antarctica; East Antarctic Plateau; Glaciology; GPR; GPS; Navigation; Paleoclimate; Snow/ice; Snow/Ice", "locations": "East Antarctic Plateau; Antarctica", "north": -80.5304, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Scambos, Ted; Bauer, Rob", "project_titles": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "projects": [{"proj_uid": "p0000587", "repository": "USAP-DC", "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.7802, "title": "GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "uid": "609282", "west": 124.0218}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "date_created": "Mon, 01 Jan 2001 00:00:00 GMT", "description": "Recent changes in the extent and stability of ice shelves in the Antarctic Peninsula prompted NSIDC to begin a monitoring program using data from the AVHRR Polar 1 km Data Set. NSIDC regularly reviews images of those ice shelves considered susceptible to rapid change due to climatic warming, and of several other major shelves that occasionally calve major icebergs.\n\nThe images in this site represent a selected subset of the available scenes, generally the clearest and most informative scenes available. The scenes are derived from either the AVHRR visible (vis) or thermal (temp) channels, enhanced by combining two channels using principal components processing. In the thermal images, bright areas are colder areas. A few additional scenes from other sensors (MODIS, Landsat) are included to provide some supplemental information on ice shelf structure and events.\n\nIf you wish to save an image, you can do so through the \u0027Save image as\u0027 option of the browser\u0027s pop-up menu. For more information contact NSIDC User Services.", "east": null, "geometry": null, "keywords": "Antarctica; AVHRR; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Sample/collection Description; Sample/Collection Description; Sea Ice", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Scambos, Ted; Raup, Bruce H.; Bohlander, Jennifer", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "Images of Antarctic Ice Shelves", "uid": "609102", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Distribution of blue ice areas in Antarctica derived from Landsat ETM+ and Modis images
|
None | 2023-10-13 | Hui, Fengming; Scambos, Ted | No project link provided | Blue-ice areas (BIAs) and their geographical distribution in Antarctica were mapped using Landsat-7 ETM+ images with 15 m spatial resolution obtained during the 1999–2003 austral summers and covering the area north of 82.5° S, and a snow grain-size image of the MODIS-based Mosaic of Antarctica (MOA) dataset with 125 m grid spacing acquired during the 2003/04 austral summer from 82.5°S to the South Pole. A map of BIAs was created with algorithms of thresholds based on band ratio and reflectance for ETM+ data and thresholds based on snow grain size for the MOA dataset. The underlying principle is that blue ice can be separated from snow or rock by their spectral discrepancies and by different grain sizes of snow and ice. We estimate the total area of BIAs in Antarctica during the data acquisition period is 234 549 km2, or 1.67% of the area of the continent. Blue ice is scattered widely over the continent but is generally located in coastal or mountainous regions. The BIA dataset presented in this study is the first map covering the entire Antarctic continent sourced solely from ETM+ and MODIS data. Support by National Natural Science Foundation of China (grant No. 41106157) and NASA grant NNX10AL42G (nsidc0549_hui_V0). | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Landsat Sea Ice/Cloud classifications surrounding project study sites
|
1744584 |
2023-01-11 | Klein, Andrew |
Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity |
This dataset a CSV file containing the percentages of water (non-land) pixels within various sized buffers (100, 300, 3,000 and 10,000 m radii) buffers around fifteen sampling sites that were classified as being either Sea Ice or Cloud in the Antarctic Landsat Views collection housed within Esri’s curated Living Atlas of the world which is a collection of ready-to-use global geographic content. The encompass a portion of the Western Antarctic Peninsula. This dataset was developed in support of projects ANT-1744550, -744570, -1744584, and -1744602. | ["POLYGON((-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-60 -61,-60 -61.8,-60 -62.6,-60 -63.4,-60 -64.2,-60 -65,-60 -65.8,-60 -66.6,-60 -67.4,-60 -68.2,-60 -69,-61 -69,-62 -69,-63 -69,-64 -69,-65 -69,-66 -69,-67 -69,-68 -69,-69 -69,-70 -69,-70 -68.2,-70 -67.4,-70 -66.6,-70 -65.8,-70 -65,-70 -64.2,-70 -63.4,-70 -62.6,-70 -61.8,-70 -61))"] | ["POINT(-65 -65)"] | false | false |
Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001-2020
|
1738992 |
2021-10-11 | Alley, Karen; Wild, Christian; Scambos, Ted; Muto, Atsu; Pettit, Erin; Truffer, Martin; Wallin, Bruce; Klinger, Marin |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
This dataset includes GeoTiffs of two-year averages of ice flow velocity (including x- and y-components and flow speed) and longitudinal, transverse, and shear strain rates for the Thwaites Eastern Ice Shelf (TEIS) from 2001-2020. The grids were derived from feature tracking on MODIS, Landsat-7, and Landsat-8 imagery. Each pixel in a grid represents the median value of a stack of all available pixels for each time period. Data are gridded at a 500 m spatial resolution in a polar stereographic (EPSG:3031) projection. Speed units are m/day and strain rates are in units of /day. In addition, we provide videos of each variable (excluding x- and y-velocity components) placed alongside a MODIS image of the same extent and from around the same time to provide context. In addition to the variables noted above, we include videos for flow direction (in degrees from grid north in an EPSG:3031 projection) and a zoomed-in version of flow direction, which were calculated from the provided grids. | ["POLYGON((-114 -74,-113 -74,-112 -74,-111 -74,-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-104 -74.2,-104 -74.4,-104 -74.6,-104 -74.8,-104 -75,-104 -75.2,-104 -75.4,-104 -75.6,-104 -75.8,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-111 -76,-112 -76,-113 -76,-114 -76,-114 -75.8,-114 -75.6,-114 -75.4,-114 -75.2,-114 -75,-114 -74.8,-114 -74.6,-114 -74.4,-114 -74.2,-114 -74))"] | ["POINT(-109 -75)"] | false | false |
Supraglacial Lakes in Antarctica
|
1643715 |
2020-12-10 | Moussavi, Mahsa; Pope, Allen; Trusel, Luke; Abdalati, Waleed; Halberstadt, Anna Ruth |
Collaborative Research: Water on the Antarctic Ice Sheet: Quantifying Surface Melt and Mapping Supraglacial Lakes |
This dataset contains extents and depths of supraglacial lakes on ice shelves across the Antarctic ice sheet, mapped from Landsat 8 imagery collected over the 2013-2020 period. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Standing Water Depth on Larsen B Ice Shelf
|
0944248 |
2014-04-29 | MacAyeal, Douglas |
Model Studies of Surface Water Behavior on Ice Shelves |
This data set addresses why surface melt water lakes on ice shelves and ice sheets are notably influential in triggering ice-shelf break-up and modulating seasonal ice flow, and are thus principle avenues by which environmental change can be transmitted to the ice sheets of Antarctica and Greenland. A comparative analysis is performed of lake geometry and derived depth (using Landsat image reflectance) in two distinct regions, one a collapsing ice shelf and the other an ablation zone of a land terminating ice sheet, to better characterize the range of surface lake variability. | ["POLYGON((-63 -63,-62.2 -63,-61.4 -63,-60.6 -63,-59.8 -63,-59 -63,-58.2 -63,-57.4 -63,-56.6 -63,-55.8 -63,-55 -63,-55 -63.4,-55 -63.8,-55 -64.2,-55 -64.6,-55 -65,-55 -65.4,-55 -65.8,-55 -66.2,-55 -66.6,-55 -67,-55.8 -67,-56.6 -67,-57.4 -67,-58.2 -67,-59 -67,-59.8 -67,-60.6 -67,-61.4 -67,-62.2 -67,-63 -67,-63 -66.6,-63 -66.2,-63 -65.8,-63 -65.4,-63 -65,-63 -64.6,-63 -64.2,-63 -63.8,-63 -63.4,-63 -63))"] | ["POINT(-59 -65)"] | false | false |
Coastal and Terminus History of the Eastern Amundsen Sea Embayment, West Antarctica, 1972 - 2011
|
0739654 |
2012-05-30 | Macgregor, Joseph A.; Catania, Ginny; Markowski, Michael; Andrews, Alan G. |
Collaborative Research: Ice-flow history of the Thwaites Glacier, West Antarctica |
This data set provides a coastline history of the eastern Amundsen Sea Embayment and terminus histories of its outlet glaciers derived from those coastlines. These outlet glaciers include Smith, Haynes, Thwaites, and Pine Island Glaciers. The coastlines were derived from detailed tracing of Landsat imagery between late 1972 and late 2011 (at a scale of 1:50,000). The data set also uses some additional data from other sources. The terminus histories are calculated as the intersections between these coastlines and 1996 flowlines. Data are available via FTP in ESRI shapefile and comma separated value (.csv) formats. | ["POLYGON((-110 -74,-109 -74,-108 -74,-107 -74,-106 -74,-105 -74,-104 -74,-103 -74,-102 -74,-101 -74,-100 -74,-100 -74.2,-100 -74.4,-100 -74.6,-100 -74.8,-100 -75,-100 -75.2,-100 -75.4,-100 -75.6,-100 -75.8,-100 -76,-101 -76,-102 -76,-103 -76,-104 -76,-105 -76,-106 -76,-107 -76,-108 -76,-109 -76,-110 -76,-110 -75.8,-110 -75.6,-110 -75.4,-110 -75.2,-110 -75,-110 -74.8,-110 -74.6,-110 -74.4,-110 -74.2,-110 -74))"] | ["POINT(-105 -75)"] | false | false |
High-resolution Image-derived Grounding and Hydrostatic Lines for the Antarctic Ice Sheet
|
None | 2011-02-20 | Bindschadler, Robert; Choi, Hyeungu | No project link provided | This data set provides grounding line and hydrostatic line locations for the Antarctic coastline and islands around Antarctica. The data are derived using customized software to combine data from Landsat-7 imagery and Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry, which were primarily collected between 1999 to 2003. The data set also includes elevations along each line, selected from six candidate digital elevation models. The data were developed as part of the Antarctic Surface Accumulation and Ice Discharge (ASAID) project. Funding trough NASA grant 509496.02.08.01.81 Data are provided in both ASCII text (.txt) and shapefile (.shp, .dbf, .shx) formats. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -62,180 -64,180 -66,180 -68,180 -70,180 -72,180 -74,180 -76,180 -78,180 -80,144 -80,108 -80,72 -80,36 -80,0 -80,-36 -80,-72 -80,-108 -80,-144 -80,-180 -80,-180 -78,-180 -76,-180 -74,-180 -72,-180 -70,-180 -68,-180 -66,-180 -64,-180 -62,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation
|
0225992 0125570 |
2006-10-05 | Fahnestock, Mark; Scambos, Ted; Haran, Terry; Bauer, Rob |
Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation |
The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other during the period of December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are 1) to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and 2) to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on the past terrestrial climate or on processes active on other planets. Snow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km<sup>2</sup> of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glazed surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas. This data set contains automated weather station (AWS) data from two sites. The Mac site was oriented on the rough sastrugi-covered windward face and the Zoe site was on the glazed leeward face. The AWSs collected data throughout the year from 16 January 2004 to 17 November 2004. Investigators received data from the two field sites via the ARGOS Satellite System (http://www.argosinc.com/). Data are provided in space-delimited ASCII text format and are available via FTP. | ["POLYGON((124.4345 -80.77546,124.443718 -80.77546,124.452936 -80.77546,124.462154 -80.77546,124.471372 -80.77546,124.48059 -80.77546,124.489808 -80.77546,124.499026 -80.77546,124.508244 -80.77546,124.517462 -80.77546,124.52668 -80.77546,124.52668 -80.776922,124.52668 -80.778384,124.52668 -80.779846,124.52668 -80.781308,124.52668 -80.78277,124.52668 -80.784232,124.52668 -80.785694,124.52668 -80.787156,124.52668 -80.788618,124.52668 -80.79008,124.517462 -80.79008,124.508244 -80.79008,124.499026 -80.79008,124.489808 -80.79008,124.48059 -80.79008,124.471372 -80.79008,124.462154 -80.79008,124.452936 -80.79008,124.443718 -80.79008,124.4345 -80.79008,124.4345 -80.788618,124.4345 -80.787156,124.4345 -80.785694,124.4345 -80.784232,124.4345 -80.78277,124.4345 -80.781308,124.4345 -80.779846,124.4345 -80.778384,124.4345 -80.776922,124.4345 -80.77546))"] | ["POINT(124.48059 -80.78277)"] | false | false |
GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation
|
0125276 |
2006-06-10 | Scambos, Ted; Bauer, Rob |
Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation |
The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other in December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate or on processes active on other planets. Snow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km<sup>2</sup> of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glaze surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas. This data set contains ground penetrating radar (GPR) data showing surface morphology and internal layering structure along with global positioning system (GPS) data collected within an area of 60 km<sup>2</sup>. GPS data are provided in space-delimited ASCII text Microsoft Excel formats, while GPR data are in JPEG format. Data are available via FTP. | ["POLYGON((124.0218 -80.5304,124.22264 -80.5304,124.42348 -80.5304,124.62432 -80.5304,124.82516 -80.5304,125.026 -80.5304,125.22684 -80.5304,125.42768 -80.5304,125.62852 -80.5304,125.82936 -80.5304,126.0302 -80.5304,126.0302 -80.55538,126.0302 -80.58036,126.0302 -80.60534,126.0302 -80.63032,126.0302 -80.6553,126.0302 -80.68028,126.0302 -80.70526,126.0302 -80.73024,126.0302 -80.75522,126.0302 -80.7802,125.82936 -80.7802,125.62852 -80.7802,125.42768 -80.7802,125.22684 -80.7802,125.026 -80.7802,124.82516 -80.7802,124.62432 -80.7802,124.42348 -80.7802,124.22264 -80.7802,124.0218 -80.7802,124.0218 -80.75522,124.0218 -80.73024,124.0218 -80.70526,124.0218 -80.68028,124.0218 -80.6553,124.0218 -80.63032,124.0218 -80.60534,124.0218 -80.58036,124.0218 -80.55538,124.0218 -80.5304))"] | ["POINT(125.026 -80.6553)"] | false | false |
Images of Antarctic Ice Shelves
|
None | 2001-01-01 | Scambos, Ted; Raup, Bruce H.; Bohlander, Jennifer | No project link provided | Recent changes in the extent and stability of ice shelves in the Antarctic Peninsula prompted NSIDC to begin a monitoring program using data from the AVHRR Polar 1 km Data Set. NSIDC regularly reviews images of those ice shelves considered susceptible to rapid change due to climatic warming, and of several other major shelves that occasionally calve major icebergs. The images in this site represent a selected subset of the available scenes, generally the clearest and most informative scenes available. The scenes are derived from either the AVHRR visible (vis) or thermal (temp) channels, enhanced by combining two channels using principal components processing. In the thermal images, bright areas are colder areas. A few additional scenes from other sensors (MODIS, Landsat) are included to provide some supplemental information on ice shelf structure and events. If you wish to save an image, you can do so through the 'Save image as' option of the browser's pop-up menu. For more information contact NSIDC User Services. | [] | [] | false | false |