{"dp_type": "Dataset", "free_text": "Ice Stratigraphy"}
[{"awards": "9911617 Blankenship, Donald; 9978236 Bell, Robin", "bounds_geometry": ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"], "date_created": "Tue, 28 Apr 2020 00:00:00 GMT", "description": "Processed IcePenetrating Radar Altimeter Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000)\r\nThis data set was acquired with a IcePenetrating Radar Altimeter during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Robin Bell and Dr. Michael Studinger). These data files are of ASCII format and include Ice LayerThickness data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work", "east": 108.0, "geometry": ["POINT(104.75 -77.25)"], "keywords": "Airborne Laser Altimeters; Airborne Radar; Airplane; Antarctica; East Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Sheet; Ice Stratigraphy; Ice Thickness; Ice Thickness Distribution; Lake Vostok; Radar; Radar Altimetry; Radar Echo Sounder; SOAR; Subglacial Lake", "locations": "East Antarctica; Antarctica; Lake Vostok", "north": -75.5, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Studinger, Michael S.; Bell, Robin", "project_titles": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR); Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n", "projects": [{"proj_uid": "p0000125", "repository": "USAP-DC", "title": "Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR)"}, {"proj_uid": "p0010097", "repository": "USAP-DC", "title": "Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work\r\n"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "SOAR-Lake Vostok Survey ice thickness data", "uid": "601297", "west": 101.5}, {"awards": "1245821 Brook, Edward J.", "bounds_geometry": ["POINT(162.167 -77.733)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": ["POINT(162.167 -77.733)"], "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica; Taylor Glacier", "north": -77.733, "nsf_funding_programs": null, "persons": "Brook, Edward J.", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.733, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "600163", "west": 162.167}, {"awards": "0088035 Arcone, Steven", "bounds_geometry": ["POLYGON((-135 -75,-130.5 -75,-126 -75,-121.5 -75,-117 -75,-112.5 -75,-108 -75,-103.5 -75,-99 -75,-94.5 -75,-90 -75,-90 -76.5,-90 -78,-90 -79.5,-90 -81,-90 -82.5,-90 -84,-90 -85.5,-90 -87,-90 -88.5,-90 -90,-94.5 -90,-99 -90,-103.5 -90,-108 -90,-112.5 -90,-117 -90,-121.5 -90,-126 -90,-130.5 -90,-135 -90,-135 -88.5,-135 -87,-135 -85.5,-135 -84,-135 -82.5,-135 -81,-135 -79.5,-135 -78,-135 -76.5,-135 -75))"], "date_created": "Sun, 01 May 2005 00:00:00 GMT", "description": "This data set includes data from radar profiles that were recorded between core sites during the November-December seasons for 1999-2002. Data were collected using an ice-penetrating radar to survey the ice sheet. Ice thickness data are available for a portion of the West Antarctic Ice Sheet. This study is part of the U.S. participation in the International Trans-Antarctic Scientific Expedition (US ITASE). Elevation data are available in Excel and Microsoft Access database format.", "east": -90.0, "geometry": ["POINT(-112.5 -82.5)"], "keywords": "Airborne Radar; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ITASE; Radar; WAIS", "locations": "Antarctica; WAIS", "north": -75.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Arcone, Steven", "project_titles": "High Resolution Radar Profiling of the Snow and Ice Stratigraphy beneath the ITASE Traverses, West Antarctic Ice Sheet", "projects": [{"proj_uid": "p0000146", "repository": "USAP-DC", "title": "High Resolution Radar Profiling of the Snow and Ice Stratigraphy beneath the ITASE Traverses, West Antarctic Ice Sheet"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "US International Trans-Antarctic Scientific Expedition 400 MHz Subsurface Radar Profiles", "uid": "609254", "west": -135.0}, {"awards": "0096299 Mayewski, Paul; 0229573 Mayewski, Paul; 0196441 Hamilton, Gordon; 0088035 Arcone, Steven", "bounds_geometry": ["POLYGON((-123.993 -77.6832,-123.6019 -77.6832,-123.2108 -77.6832,-122.8197 -77.6832,-122.4286 -77.6832,-122.0375 -77.6832,-121.6464 -77.6832,-121.2553 -77.6832,-120.8642 -77.6832,-120.4731 -77.6832,-120.082 -77.6832,-120.082 -77.7232,-120.082 -77.7632,-120.082 -77.8032,-120.082 -77.8432,-120.082 -77.8832,-120.082 -77.9232,-120.082 -77.9632,-120.082 -78.0032,-120.082 -78.0432,-120.082 -78.0832,-120.4731 -78.0832,-120.8642 -78.0832,-121.2553 -78.0832,-121.6464 -78.0832,-122.0375 -78.0832,-122.4286 -78.0832,-122.8197 -78.0832,-123.2108 -78.0832,-123.6019 -78.0832,-123.993 -78.0832,-123.993 -78.0432,-123.993 -78.0032,-123.993 -77.9632,-123.993 -77.9232,-123.993 -77.8832,-123.993 -77.8432,-123.993 -77.8032,-123.993 -77.7632,-123.993 -77.7232,-123.993 -77.6832))"], "date_created": "Wed, 06 Apr 2005 00:00:00 GMT", "description": "Snow accumulation rates typically show high variability over short distances. This data set contains accumulation rates derived from ground-penetrating radar (GPR) used to detect isochronal layers in the firn in West Antarctica. These layers were then dated using results from ice core analyses. These data show that accumulation rates along this profile have decreased in recent decades. The radar profile extends between two ice core sites taken along one of the US-ITASE traverse routes.", "east": -120.082, "geometry": ["POINT(-122.0375 -77.8832)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; ITASE; WAIS", "locations": "Antarctica; WAIS", "north": -77.6832, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Spikes, Vandy Blue; Hamilton, Gordon S.; Mayewski, Paul A.; Arcone, Steven; Kaspari, Susan", "project_titles": "High Resolution Radar Profiling of the Snow and Ice Stratigraphy beneath the ITASE Traverses, West Antarctic Ice Sheet", "projects": [{"proj_uid": "p0000146", "repository": "USAP-DC", "title": "High Resolution Radar Profiling of the Snow and Ice Stratigraphy beneath the ITASE Traverses, West Antarctic Ice Sheet"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ITASE", "south": -78.0832, "title": "US International Trans-Antarctic Scientific Expedition (US ITASE): GPR Profiles and Accumulation Mapping", "uid": "609269", "west": -123.993}, {"awards": "9316338 Jacobel, Robert", "bounds_geometry": ["POLYGON((-155 -81,-154 -81,-153 -81,-152 -81,-151 -81,-150 -81,-149 -81,-148 -81,-147 -81,-146 -81,-145 -81,-145 -81.2,-145 -81.4,-145 -81.6,-145 -81.8,-145 -82,-145 -82.2,-145 -82.4,-145 -82.6,-145 -82.8,-145 -83,-146 -83,-147 -83,-148 -83,-149 -83,-150 -83,-151 -83,-152 -83,-153 -83,-154 -83,-155 -83,-155 -82.8,-155 -82.6,-155 -82.4,-155 -82.2,-155 -82,-155 -81.8,-155 -81.6,-155 -81.4,-155 -81.2,-155 -81))"], "date_created": "Fri, 01 Jan 1999 00:00:00 GMT", "description": "The Siple Dome Glaciology and Ice Stream History project was part of Western Divide West Antarctic Ice Cores (WAISCORES), an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica.\n\nThis project supported glaciological studies of Siple Dome and its surroundings between Ice Streams C and D, via two major goals. First, it sought to characterize the dynamic environment and ice stratigraphy of Siple Dome and its surroundings, with the specific mission of assessing Siple Dome as a potential deep core site; and second, to determine whether the configuration of ice stream flow in the region has changed over time. Both goals are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its history, and potential future behavior.\n\nThis project was a collaboration between Saint Olaf College, the University of Washington, and the National Snow and Ice Data Center at the University of Colorado. It included studies of satellite imagery and acquisition and analysis of field data from GPS, firn cores and snow pits, and ground-based ice-penetrating radar.\n\nData in this collection were obtained during two Antarctic field seasons in 1994\u201395 and 1996\u201397. The data set is available via FTP as Microsoft Excel Spreadsheet (.xls) and ASCII tab delimited (.txt) files. Related notes are available as a Microsoft Word (.doc) or text (.txt) file. Related images and charts are available as Graphics Interchange Format (.gif) and Joint Photographic Experts Group (.jpg) files.", "east": -145.0, "geometry": ["POINT(-150 -82)"], "keywords": "Antarctica; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Sample/collection Description; Sample/Collection Description; Siple Dome; Siple Dome Ice Core", "locations": "Antarctica; Siple Dome", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Jacobel, Robert", "project_titles": "Siple Dome Glaciology and Ice Stream History", "projects": [{"proj_uid": "p0000190", "repository": "USAP-DC", "title": "Siple Dome Glaciology and Ice Stream History"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -83.0, "title": "Siple Dome Glaciology and Ice Stream History 1994, 1996", "uid": "609085", "west": -155.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
SOAR-Lake Vostok Survey ice thickness data
|
9911617 9978236 |
2020-04-28 | Studinger, Michael S.; Bell, Robin |
Continuation of Activities for the Support Office for Aerogeophysical Research (SOAR) Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work |
Processed IcePenetrating Radar Altimeter Data acquired during the SOAR Twin Otter expedition SOAR-LVS (2000) This data set was acquired with a IcePenetrating Radar Altimeter during SOAR Twin Otter expedition SOAR-LVS conducted in 2000 (Chief Scientist: Dr. Robin Bell; Investigator(s): Dr. Robin Bell and Dr. Michael Studinger). These data files are of ASCII format and include Ice LayerThickness data and were processed after data collection. Data were acquired as part of the project(s): SOAR-Lake Vostok Survey (LVS) and Understanding the Boundary Conditions of the Lake Vostok Environment: A Site Survey for Future Work | ["POLYGON((101.5 -75.5,102.15 -75.5,102.8 -75.5,103.45 -75.5,104.1 -75.5,104.75 -75.5,105.4 -75.5,106.05 -75.5,106.7 -75.5,107.35 -75.5,108 -75.5,108 -75.85,108 -76.2,108 -76.55,108 -76.9,108 -77.25,108 -77.6,108 -77.95,108 -78.3,108 -78.65,108 -79,107.35 -79,106.7 -79,106.05 -79,105.4 -79,104.75 -79,104.1 -79,103.45 -79,102.8 -79,102.15 -79,101.5 -79,101.5 -78.65,101.5 -78.3,101.5 -77.95,101.5 -77.6,101.5 -77.25,101.5 -76.9,101.5 -76.55,101.5 -76.2,101.5 -75.85,101.5 -75.5))"] | ["POINT(104.75 -77.25)"] | false | false |
The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive
|
1245821 |
2016-01-01 | Brook, Edward J. |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica. | ["POINT(162.167 -77.733)"] | ["POINT(162.167 -77.733)"] | false | false |
US International Trans-Antarctic Scientific Expedition 400 MHz Subsurface Radar Profiles
|
0088035 |
2005-05-01 | Arcone, Steven |
High Resolution Radar Profiling of the Snow and Ice Stratigraphy beneath the ITASE Traverses, West Antarctic Ice Sheet |
This data set includes data from radar profiles that were recorded between core sites during the November-December seasons for 1999-2002. Data were collected using an ice-penetrating radar to survey the ice sheet. Ice thickness data are available for a portion of the West Antarctic Ice Sheet. This study is part of the U.S. participation in the International Trans-Antarctic Scientific Expedition (US ITASE). Elevation data are available in Excel and Microsoft Access database format. | ["POLYGON((-135 -75,-130.5 -75,-126 -75,-121.5 -75,-117 -75,-112.5 -75,-108 -75,-103.5 -75,-99 -75,-94.5 -75,-90 -75,-90 -76.5,-90 -78,-90 -79.5,-90 -81,-90 -82.5,-90 -84,-90 -85.5,-90 -87,-90 -88.5,-90 -90,-94.5 -90,-99 -90,-103.5 -90,-108 -90,-112.5 -90,-117 -90,-121.5 -90,-126 -90,-130.5 -90,-135 -90,-135 -88.5,-135 -87,-135 -85.5,-135 -84,-135 -82.5,-135 -81,-135 -79.5,-135 -78,-135 -76.5,-135 -75))"] | ["POINT(-112.5 -82.5)"] | false | false |
US International Trans-Antarctic Scientific Expedition (US ITASE): GPR Profiles and Accumulation Mapping
|
0096299 0229573 0196441 0088035 |
2005-04-06 | Spikes, Vandy Blue; Hamilton, Gordon S.; Mayewski, Paul A.; Arcone, Steven; Kaspari, Susan |
High Resolution Radar Profiling of the Snow and Ice Stratigraphy beneath the ITASE Traverses, West Antarctic Ice Sheet |
Snow accumulation rates typically show high variability over short distances. This data set contains accumulation rates derived from ground-penetrating radar (GPR) used to detect isochronal layers in the firn in West Antarctica. These layers were then dated using results from ice core analyses. These data show that accumulation rates along this profile have decreased in recent decades. The radar profile extends between two ice core sites taken along one of the US-ITASE traverse routes. | ["POLYGON((-123.993 -77.6832,-123.6019 -77.6832,-123.2108 -77.6832,-122.8197 -77.6832,-122.4286 -77.6832,-122.0375 -77.6832,-121.6464 -77.6832,-121.2553 -77.6832,-120.8642 -77.6832,-120.4731 -77.6832,-120.082 -77.6832,-120.082 -77.7232,-120.082 -77.7632,-120.082 -77.8032,-120.082 -77.8432,-120.082 -77.8832,-120.082 -77.9232,-120.082 -77.9632,-120.082 -78.0032,-120.082 -78.0432,-120.082 -78.0832,-120.4731 -78.0832,-120.8642 -78.0832,-121.2553 -78.0832,-121.6464 -78.0832,-122.0375 -78.0832,-122.4286 -78.0832,-122.8197 -78.0832,-123.2108 -78.0832,-123.6019 -78.0832,-123.993 -78.0832,-123.993 -78.0432,-123.993 -78.0032,-123.993 -77.9632,-123.993 -77.9232,-123.993 -77.8832,-123.993 -77.8432,-123.993 -77.8032,-123.993 -77.7632,-123.993 -77.7232,-123.993 -77.6832))"] | ["POINT(-122.0375 -77.8832)"] | false | false |
Siple Dome Glaciology and Ice Stream History 1994, 1996
|
9316338 |
1999-01-01 | Jacobel, Robert |
Siple Dome Glaciology and Ice Stream History |
The Siple Dome Glaciology and Ice Stream History project was part of Western Divide West Antarctic Ice Cores (WAISCORES), an NSF-funded project to understand the influence of the West Antarctic ice sheet on climate and sea level change. WAISCORES researchers acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. This project supported glaciological studies of Siple Dome and its surroundings between Ice Streams C and D, via two major goals. First, it sought to characterize the dynamic environment and ice stratigraphy of Siple Dome and its surroundings, with the specific mission of assessing Siple Dome as a potential deep core site; and second, to determine whether the configuration of ice stream flow in the region has changed over time. Both goals are relevant to understanding the dynamics of the West Antarctic Ice Sheet (WAIS), its history, and potential future behavior. This project was a collaboration between Saint Olaf College, the University of Washington, and the National Snow and Ice Data Center at the University of Colorado. It included studies of satellite imagery and acquisition and analysis of field data from GPS, firn cores and snow pits, and ground-based ice-penetrating radar. Data in this collection were obtained during two Antarctic field seasons in 1994–95 and 1996–97. The data set is available via FTP as Microsoft Excel Spreadsheet (.xls) and ASCII tab delimited (.txt) files. Related notes are available as a Microsoft Word (.doc) or text (.txt) file. Related images and charts are available as Graphics Interchange Format (.gif) and Joint Photographic Experts Group (.jpg) files. | ["POLYGON((-155 -81,-154 -81,-153 -81,-152 -81,-151 -81,-150 -81,-149 -81,-148 -81,-147 -81,-146 -81,-145 -81,-145 -81.2,-145 -81.4,-145 -81.6,-145 -81.8,-145 -82,-145 -82.2,-145 -82.4,-145 -82.6,-145 -82.8,-145 -83,-146 -83,-147 -83,-148 -83,-149 -83,-150 -83,-151 -83,-152 -83,-153 -83,-154 -83,-155 -83,-155 -82.8,-155 -82.6,-155 -82.4,-155 -82.2,-155 -82,-155 -81.8,-155 -81.6,-155 -81.4,-155 -81.2,-155 -81))"] | ["POINT(-150 -82)"] | false | false |