{"dp_type": "Dataset", "free_text": "Drake Passage"}
[{"awards": "1853291 Girton, James", "bounds_geometry": ["POLYGON((-70 -58,-68.8 -58,-67.6 -58,-66.4 -58,-65.2 -58,-64 -58,-62.8 -58,-61.6 -58,-60.4 -58,-59.2 -58,-58 -58,-58 -58.8,-58 -59.6,-58 -60.4,-58 -61.2,-58 -62,-58 -62.8,-58 -63.6,-58 -64.4,-58 -65.2,-58 -66,-59.2 -66,-60.4 -66,-61.6 -66,-62.8 -66,-64 -66,-65.2 -66,-66.4 -66,-67.6 -66,-68.8 -66,-70 -66,-70 -65.2,-70 -64.4,-70 -63.6,-70 -62.8,-70 -62,-70 -61.2,-70 -60.4,-70 -59.6,-70 -58.8,-70 -58))"], "date_created": "Mon, 17 Feb 2025 00:00:00 GMT", "description": "This data file collects the initial processed versions of all upper-ocean and lower-atmosphere data streams (along with subsampled satellite and reanalysis products along the survey track) from the 2019/20 deployment of the APL-UW Wave Glider autonomous surface vehicle (SV3-153) in Drake Passage.\r\n\u003cbr/\u003e", "east": -58.0, "geometry": ["POINT(-64 -62)"], "keywords": "Antarctica; Cryosphere; Drake Passage; LMG1909; LMG2002; R/v Laurence M. Gould; Temperature; Wave Glider; Wind Speed", "locations": "Antarctica; Drake Passage", "north": -58.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Girton, James", "project_titles": "Wave Glider Observations of Surface Fluxes and Mixed-layer Processes in the Southern Ocean", "projects": [{"proj_uid": "p0010493", "repository": "USAP-DC", "title": "Wave Glider Observations of Surface Fluxes and Mixed-layer Processes in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -66.0, "title": "APL-UW Southern Ocean Wave Glider Data from 2019/20 Mission", "uid": "601902", "west": -70.0}, {"awards": "0902957 Robinson, Laura", "bounds_geometry": ["POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The proposal seeks funds to continue a follow-up analytical work of deep-sea corals collected in the Drake Passage during a research cruise. The project\u0027s goal is paleo-climate research looking to constrain the depth structure and time evolution of the radiocarbon content of the Southern Ocean during the glacial and deglaciation. Radiocarbon is a versatile tracer of past climate; its radioactive decay provides an internal clock with which to assess the rates of processes, and it can be used to trace the movement of carbon through the Earth\u0027s system. It enters the ocean through air-sea gas exchange, so processes that limits this will, therefore, reduce the radiocarbon content of both surface and deep waters. The Southern Ocean is a critical location for exchange of heat and carbon between the deep-ocean and atmospheric reservoirs, and the deep waters formed there fill large volumes of the global deep and intermediate oceans. As strong currents tend to scour away sediments, carbonate preservation is limited, and radiocarbon reservoir ages are poorly constrained, many traditional paleoceanographic techniques become impractical. It is proposed to alleviate these difficulties analyzing the chemical composition of deep-sea coral skeletons. Their aragonitic skeletons can be precisely dated using U-series decay, and when coupled with radiocarbon analyses will allow to calculate the C14/C12 ratio of the past water column.", "east": -35.0, "geometry": ["POINT(-52.75 -58)"], "keywords": "Biota; Corals; Drake Passage; Geochronology; NBP0805; Oceans; Paleoclimate; Radiocarbon; Southern Ocean", "locations": "Drake Passage; Southern Ocean", "north": -54.5, "nsf_funding_programs": null, "persons": "Robinson, Laura", "project_titles": "LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals", "projects": [{"proj_uid": "p0000519", "repository": "USAP-DC", "title": "LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -61.5, "title": "LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals", "uid": "600111", "west": -70.5}, {"awards": "0944474 Robinson, Laura", "bounds_geometry": ["POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Polar oceans are the main sites of deep-water formation and are critical to the exchange of heat and carbon between the deep ocean and the atmosphere. This award \"Historic perspectives on climate and biogeography from deep-sea corals in the Drake Passage\" will address the following specific research questions: What was the radiocarbon content of the Southern Ocean during the last glacial maximum and during past rapid climate change events? and What are the major controls on the past and present distribution of cold-water corals within the Drake Passage and adjacent continental shelves? Testing these overall questions will allow the researchers to better understand how processes in the Southern Ocean are linked to climate change over millennia. This award is being funded by the Antarctic Earth Sciences Program of NSF\u0027s Office of Polar Programs, Antarctic Division. INTELLECTUAL MERIT: The skeletons of deep-sea corals are abundant in the Southern Ocean, and can be dated using U-series techniques making them a useful archive of oceanographic history. By pairing U-series and radiocarbon analyses the awardees can reconstruct the radiocarbon content of seawater in the past, allowing them to address the research questions raised above. Collection of living deep-sea corals along with environmental data will allow them to address the broader biogeography questions posed above as well. The awardees are uniquely qualified to answer these questions in their respective labs via cutting edge technologies, and they have shown promising results from a preliminary pilot cruise to the area in 2008. BROADER IMPACTS: Societal Relevance: The proposed paleoclimate research will make significant advances toward constraining the Southern Ocean\u0027s influence on global climate, specifically it should help set the bounds for the upper limits on how fast the ocean circulation might change in this region of the world, which is of high societal relevance in this era of changing climate. Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating undergraduate through post-doctoral students into research programs; ii) promotion of K-12 teaching and learning programs by providing information via a cruise website and in-school talks, iii) making the data collected available to the wider research community via data archives such as Seamounts Online and the Seamount Biogeographic Network and iv) reaching a larger public audience through such venues as interviews in the popular media.", "east": -35.0, "geometry": ["POINT(-52.75 -58)"], "keywords": "Biota; Corals; Cruise Report; Drake Passage; NBP1103; Oceans; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Southern Ocean; Drake Passage", "north": -54.5, "nsf_funding_programs": null, "persons": "Robinson, Laura", "project_titles": "Collaborative Research: Historic Perspectives on Climate and Biogeography from Deep-sea Corals in the Drake Passage", "projects": [{"proj_uid": "p0000514", "repository": "USAP-DC", "title": "Collaborative Research: Historic Perspectives on Climate and Biogeography from Deep-sea Corals in the Drake Passage"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -61.5, "title": "Historic Perspectives on Climate and Biogeography from Deep-Sea Corals in the Drake Passage", "uid": "600114", "west": -70.5}, {"awards": "0338087 Scheltema, Rudolf", "bounds_geometry": ["POLYGON((-70 -53,-68.4 -53,-66.8 -53,-65.2 -53,-63.6 -53,-62 -53,-60.4 -53,-58.8 -53,-57.2 -53,-55.6 -53,-54 -53,-54 -54.5,-54 -56,-54 -57.5,-54 -59,-54 -60.5,-54 -62,-54 -63.5,-54 -65,-54 -66.5,-54 -68,-55.6 -68,-57.2 -68,-58.8 -68,-60.4 -68,-62 -68,-63.6 -68,-65.2 -68,-66.8 -68,-68.4 -68,-70 -68,-70 -66.5,-70 -65,-70 -63.5,-70 -62,-70 -60.5,-70 -59,-70 -57.5,-70 -56,-70 -54.5,-70 -53))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research.", "east": -54.0, "geometry": ["POINT(-62 -60.5)"], "keywords": "Antarctica; Biota; Oceans; R/v Laurence M. Gould; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -53.0, "nsf_funding_programs": null, "persons": "Scheltema, Rudolf", "project_titles": "Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "projects": [{"proj_uid": "p0000189", "repository": "USAP-DC", "title": "Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.0, "title": "Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "uid": "600035", "west": -70.0}, {"awards": "0439906 Koch, Paul", "bounds_geometry": ["POLYGON((162 -72,162.6 -72,163.2 -72,163.8 -72,164.4 -72,165 -72,165.6 -72,166.2 -72,166.8 -72,167.4 -72,168 -72,168 -72.6,168 -73.2,168 -73.8,168 -74.4,168 -75,168 -75.6,168 -76.2,168 -76.8,168 -77.4,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.4,162 -76.8,162 -76.2,162 -75.6,162 -75,162 -74.4,162 -73.8,162 -73.2,162 -72.6,162 -72))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "During previous NSF-sponsored research, the PI\u0027s discovered that southern elephant seal colonies once existed along the Victoria Land coast (VLC) of Antarctica, a region where they are no longer observed. Molted seal skin and hair occur along 300 km of coastline, more than 1000 km from any extant colony. The last record of a seal at a former colony site is at ~A.D. 1600. Because abandonment occurred prior to subantarctic sealing, disappearance of the VLC colony probably was due to environmental factors, possibly cooling and encroachment of land-fast, perennial sea ice that made access to haul-out sites difficult. The record of seal inhabitation along the VLC, therefore, has potential as a proxy for climate change. Elephant seals are a predominantly subantarctic species with circumpolar distribution. Genetic studies have revealed significant differentiation among populations, particularly with regard to that at Macquarie I., which is the extant population nearest to the abandoned VLC colony. Not only is the Macquarie population unique genetically, but it is has undergone unexplained decline of 2%/yr over the last 50 years3. In a pilot study, genetic analyses showed a close relationship between the VLC seals and those at Macquarie I. An understanding of the relationship between the two populations, as well as of the environmental pressures that led to the demise of the VLC colonies, will provide a better understanding of present-day population genetic structure, the effect of environmental change on seal populations, and possibly the reasons underlying the modern decline at Macquarie Island. This project addresses several key research problems: (1) Why did elephant seals colonize and then abandon the VLC? (2) What does the elephant seal record reveal about Holocene climate change and sea-ice conditions? (3) What were the foraging strategies of the seals and did these strategies change over time as climate varied? (4) How does the genetic structure of the VLC seals relate to extant populations? (5) How did genetic diversity change over time and with colony decline? (6) Using ancient samples to estimate mtDNA mutation rates, what can be learned about VLC population dynamics over time? (7) What was the ecological relationship between elephant seals and Adelie penguins that occupied the same sites, but apparently at different times? The proposed work includes the professional training of young researchers and incorporation of data into graduate and undergraduate courses.\n\nBecause of extreme isolation of the Antarctic continent since the \nEarly Oligocene, one expects a unique invertebrate benthic fauna with \na high degree of endemism. Yet some invertebrate taxa that constitute \nimportant ecological components of sedimentary benthic communities \ninclude more than 40 percent non-endemic species (e.g., benthic \npolychaetes). To account for non-endemic species, intermittent genetic \nexchange must occur between Antarctic and other (e.g. South American) \npopulations. The most likely mechanism for such gene flow, at least \nfor in-faunal and mobile macrobenthos, is dispersal of planktonic \nlarvae across the sub- Antarctic and Antarctic polar fronts. To test \nfor larval dispersal as a mechanism of maintaining genetic continuity \nacross polar fronts, the scientists propose to (1) take plankton \nsamples along transects across Drake passage during both the austral \nsummer and winter seasons while concurrently collecting the \nappropriate hydrographic data. Such data will help elucidate the \nhydrographic mechanisms that allow dispersal across Drake Passage. \nUsing a molecular phylogenetic approach, they will (2) compare \nseemingly identical adult forms from Antarctic and South America \ncontinents to identify genetic breaks, historical gene flow, and \ncontrol for the presence of cryptic species. (3) Similar molecular \ntools will be used to relate planktonic larvae to their adult forms. \nThrough this procedure, they propose to link the larval forms \nrespectively to their Antarctic or South America origins. The proposed \nwork builds on previous research that provides the basis for this \neffort to develop a synthetic understanding of historical gene flow \nand present day dispersal mechanism in South American/Drake Passage/ \nAntarctic Peninsular region. Furthermore, this work represents one of \nthe first attempts to examine recent gene flow in Antarctic benthic \ninvertebrates. Graduate students and a postdoctoral fellow will be \ntrained during this research\n", "east": 168.0, "geometry": ["POINT(165 -75)"], "keywords": "Biota; Isotope; Penguin; Ross Sea; Seals; Southern Ocean", "locations": "Southern Ocean; Ross Sea", "north": -72.0, "nsf_funding_programs": null, "persons": "Koch, Paul", "project_titles": "Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "projects": [{"proj_uid": "p0000533", "repository": "USAP-DC", "title": "Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "uid": "600041", "west": 162.0}, {"awards": null, "bounds_geometry": null, "date_created": "Thu, 26 Mar 2009 00:00:00 GMT", "description": "Radium and Thorium isotope data summaries from AMLR and NBP cruises to the Antarctic in 2006 Naturally occurring radium isotopes (224Ra, 226Ra, 228Ra) were used in determining lateral mixing processes which are reported in dpm/m3. Particulate organic Carbon (POC) flux was determined through measuring Thorium (234Th) reported in dpm/kg. \n\nCruises \n AMLR (Antarctic Marine Living Resources) R/V Yuzhmorgeologiya Jan/2006: \n The research program was focused in the southern Drake Passage along the Shackelton Shelf located near the Bransfield Strait. Samples were obtained from the R/V Yuzhmorgeologiya and inflatables that were taken to island locations. \n \n Lat/Lon Bounding Box \n -62.2538Lat, -62.9966Lon \n -63.2335Lat, -59.0332Lon \n -59.9964Lat, -55.7612Lon \n -61.4995Lat, -53.9996Lon \n \n NBP (Nathaniel B. Palmer) R/V Nathaniel B. Palmer July/2006: \n The research was conducted in the same region of the Drake Passage as the AMLR cruise. Samples were obtained aboard the R/V Nathaniel B. Palmer \n \n Lat/Lon bounding box \n -60.4991Lat, -58.5613Lon \n -62.3599Lat, -58.0392Lon \n -60.2783Lat, -57.4509Lon \n -61.2683Lat, -54.2852Lon ", "east": null, "geometry": null, "keywords": null, "locations": null, "north": null, "nsf_funding_programs": null, "persons": null, "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "Radium and Thorium isotope data summaries from AMLR and NBP cruises to the Antarctic in 2006", "uid": "600003", "west": null}, {"awards": "0742057 Gallager, Scott", "bounds_geometry": ["POLYGON((-168.291 -64.846,-165.018 -64.846,-161.745 -64.846,-158.472 -64.846,-155.199 -64.846,-151.926 -64.846,-148.653 -64.846,-145.38 -64.846,-142.107 -64.846,-138.834 -64.846,-135.561 -64.846,-135.561 -66.0269,-135.561 -67.2078,-135.561 -68.3887,-135.561 -69.5696,-135.561 -70.7505,-135.561 -71.9314,-135.561 -73.1123,-135.561 -74.2932,-135.561 -75.4741,-135.561 -76.655,-138.834 -76.655,-142.107 -76.655,-145.38 -76.655,-148.653 -76.655,-151.926 -76.655,-155.199 -76.655,-158.472 -76.655,-161.745 -76.655,-165.018 -76.655,-168.291 -76.655,-168.291 -75.4741,-168.291 -74.2932,-168.291 -73.1123,-168.291 -71.9314,-168.291 -70.7505,-168.291 -69.5696,-168.291 -68.3887,-168.291 -67.2078,-168.291 -66.0269,-168.291 -64.846))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The research will continue and extend the study in the Southern Ocean that was initiated during the Oden Southern Ocean 2006 expedition in collaboration with Swedish scientist Mellissa Chierici. We will quantify carbon flux through the food web in the marginal ice zone (MIZ) by measuring size fractionated primary and secondary production, grazing and carbon flux through nanoplankton (2-20 um), microplankton (20-200um), and mesoplankton (200-2000 um). Community structure, species abundance and size specific grazing rates will be quantified using a variety of techniques both underway and at ice stations along the MIZ. The proposed cruise track extends across the Drake Passage to the Western Antarctic Peninsula (WAP) with three station transects along a gradient from the open ocean through the marginal ice zone (MIZ) in the Bellinghausen and Amundsen Seas and into the Ross Sea Polynya. Ice stations along each transect will provide material to characterize production associated with annual ice. Underway measurements of primary and secondary production (chlorophyll, CDOM, microplankton, and mesoplankton) and hydrography (temperature, salinity, pH, DO, turbidity) will establish a baseline for future cruises and as support for other projects such as biogeochemical studies on carbon dioxide drawdown and trace metal work on primary production. The outcome of these measurements will be a description of nano to mesoplankton standing stocks, community structure, and carbon flux along the MIZ in the Bellinghausen and Amundsen Seas and the Ross Sea Polynya.", "east": -135.561, "geometry": ["POINT(-151.926 -70.7505)"], "keywords": "Amundsen Sea; Biota; Microbiology; Navigation; Oceans; Oden; OSO2007; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Southern Ocean; Amundsen Sea", "north": -64.846, "nsf_funding_programs": null, "persons": "Dennett, Mark; Gallager, Scott", "project_titles": "SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions", "projects": [{"proj_uid": "p0000563", "repository": "USAP-DC", "title": "SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.655, "title": "SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions", "uid": "600086", "west": -168.291}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
APL-UW Southern Ocean Wave Glider Data from 2019/20 Mission
|
1853291 |
2025-02-17 | Girton, James |
Wave Glider Observations of Surface Fluxes and Mixed-layer Processes in the Southern Ocean |
This data file collects the initial processed versions of all upper-ocean and lower-atmosphere data streams (along with subsampled satellite and reanalysis products along the survey track) from the 2019/20 deployment of the APL-UW Wave Glider autonomous surface vehicle (SV3-153) in Drake Passage. <br/> | ["POLYGON((-70 -58,-68.8 -58,-67.6 -58,-66.4 -58,-65.2 -58,-64 -58,-62.8 -58,-61.6 -58,-60.4 -58,-59.2 -58,-58 -58,-58 -58.8,-58 -59.6,-58 -60.4,-58 -61.2,-58 -62,-58 -62.8,-58 -63.6,-58 -64.4,-58 -65.2,-58 -66,-59.2 -66,-60.4 -66,-61.6 -66,-62.8 -66,-64 -66,-65.2 -66,-66.4 -66,-67.6 -66,-68.8 -66,-70 -66,-70 -65.2,-70 -64.4,-70 -63.6,-70 -62.8,-70 -62,-70 -61.2,-70 -60.4,-70 -59.6,-70 -58.8,-70 -58))"] | ["POINT(-64 -62)"] | false | false |
LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals
|
0902957 |
2011-01-01 | Robinson, Laura |
LGM and Deglacial Radiocarbon from U-series Dated Drake Passage Deep-sea Corals |
The proposal seeks funds to continue a follow-up analytical work of deep-sea corals collected in the Drake Passage during a research cruise. The project's goal is paleo-climate research looking to constrain the depth structure and time evolution of the radiocarbon content of the Southern Ocean during the glacial and deglaciation. Radiocarbon is a versatile tracer of past climate; its radioactive decay provides an internal clock with which to assess the rates of processes, and it can be used to trace the movement of carbon through the Earth's system. It enters the ocean through air-sea gas exchange, so processes that limits this will, therefore, reduce the radiocarbon content of both surface and deep waters. The Southern Ocean is a critical location for exchange of heat and carbon between the deep-ocean and atmospheric reservoirs, and the deep waters formed there fill large volumes of the global deep and intermediate oceans. As strong currents tend to scour away sediments, carbonate preservation is limited, and radiocarbon reservoir ages are poorly constrained, many traditional paleoceanographic techniques become impractical. It is proposed to alleviate these difficulties analyzing the chemical composition of deep-sea coral skeletons. Their aragonitic skeletons can be precisely dated using U-series decay, and when coupled with radiocarbon analyses will allow to calculate the C14/C12 ratio of the past water column. | ["POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5))"] | ["POINT(-52.75 -58)"] | false | false |
Historic Perspectives on Climate and Biogeography from Deep-Sea Corals in the Drake Passage
|
0944474 |
2011-01-01 | Robinson, Laura |
Collaborative Research: Historic Perspectives on Climate and Biogeography from Deep-sea Corals in the Drake Passage |
Polar oceans are the main sites of deep-water formation and are critical to the exchange of heat and carbon between the deep ocean and the atmosphere. This award "Historic perspectives on climate and biogeography from deep-sea corals in the Drake Passage" will address the following specific research questions: What was the radiocarbon content of the Southern Ocean during the last glacial maximum and during past rapid climate change events? and What are the major controls on the past and present distribution of cold-water corals within the Drake Passage and adjacent continental shelves? Testing these overall questions will allow the researchers to better understand how processes in the Southern Ocean are linked to climate change over millennia. This award is being funded by the Antarctic Earth Sciences Program of NSF's Office of Polar Programs, Antarctic Division. INTELLECTUAL MERIT: The skeletons of deep-sea corals are abundant in the Southern Ocean, and can be dated using U-series techniques making them a useful archive of oceanographic history. By pairing U-series and radiocarbon analyses the awardees can reconstruct the radiocarbon content of seawater in the past, allowing them to address the research questions raised above. Collection of living deep-sea corals along with environmental data will allow them to address the broader biogeography questions posed above as well. The awardees are uniquely qualified to answer these questions in their respective labs via cutting edge technologies, and they have shown promising results from a preliminary pilot cruise to the area in 2008. BROADER IMPACTS: Societal Relevance: The proposed paleoclimate research will make significant advances toward constraining the Southern Ocean's influence on global climate, specifically it should help set the bounds for the upper limits on how fast the ocean circulation might change in this region of the world, which is of high societal relevance in this era of changing climate. Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating undergraduate through post-doctoral students into research programs; ii) promotion of K-12 teaching and learning programs by providing information via a cruise website and in-school talks, iii) making the data collected available to the wider research community via data archives such as Seamounts Online and the Seamount Biogeographic Network and iv) reaching a larger public audience through such venues as interviews in the popular media. | ["POLYGON((-70.5 -54.5,-66.95 -54.5,-63.4 -54.5,-59.85 -54.5,-56.3 -54.5,-52.75 -54.5,-49.2 -54.5,-45.65 -54.5,-42.1 -54.5,-38.55 -54.5,-35 -54.5,-35 -55.2,-35 -55.9,-35 -56.6,-35 -57.3,-35 -58,-35 -58.7,-35 -59.4,-35 -60.1,-35 -60.8,-35 -61.5,-38.55 -61.5,-42.1 -61.5,-45.65 -61.5,-49.2 -61.5,-52.75 -61.5,-56.3 -61.5,-59.85 -61.5,-63.4 -61.5,-66.95 -61.5,-70.5 -61.5,-70.5 -60.8,-70.5 -60.1,-70.5 -59.4,-70.5 -58.7,-70.5 -58,-70.5 -57.3,-70.5 -56.6,-70.5 -55.9,-70.5 -55.2,-70.5 -54.5))"] | ["POINT(-52.75 -58)"] | false | false |
Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates
|
0338087 |
2010-01-01 | Scheltema, Rudolf |
Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates |
Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research. | ["POLYGON((-70 -53,-68.4 -53,-66.8 -53,-65.2 -53,-63.6 -53,-62 -53,-60.4 -53,-58.8 -53,-57.2 -53,-55.6 -53,-54 -53,-54 -54.5,-54 -56,-54 -57.5,-54 -59,-54 -60.5,-54 -62,-54 -63.5,-54 -65,-54 -66.5,-54 -68,-55.6 -68,-57.2 -68,-58.8 -68,-60.4 -68,-62 -68,-63.6 -68,-65.2 -68,-66.8 -68,-68.4 -68,-70 -68,-70 -66.5,-70 -65,-70 -63.5,-70 -62,-70 -60.5,-70 -59,-70 -57.5,-70 -56,-70 -54.5,-70 -53))"] | ["POINT(-62 -60.5)"] | false | false |
Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change
|
0439906 |
2010-01-01 | Koch, Paul |
Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change |
During previous NSF-sponsored research, the PI's discovered that southern elephant seal colonies once existed along the Victoria Land coast (VLC) of Antarctica, a region where they are no longer observed. Molted seal skin and hair occur along 300 km of coastline, more than 1000 km from any extant colony. The last record of a seal at a former colony site is at ~A.D. 1600. Because abandonment occurred prior to subantarctic sealing, disappearance of the VLC colony probably was due to environmental factors, possibly cooling and encroachment of land-fast, perennial sea ice that made access to haul-out sites difficult. The record of seal inhabitation along the VLC, therefore, has potential as a proxy for climate change. Elephant seals are a predominantly subantarctic species with circumpolar distribution. Genetic studies have revealed significant differentiation among populations, particularly with regard to that at Macquarie I., which is the extant population nearest to the abandoned VLC colony. Not only is the Macquarie population unique genetically, but it is has undergone unexplained decline of 2%/yr over the last 50 years3. In a pilot study, genetic analyses showed a close relationship between the VLC seals and those at Macquarie I. An understanding of the relationship between the two populations, as well as of the environmental pressures that led to the demise of the VLC colonies, will provide a better understanding of present-day population genetic structure, the effect of environmental change on seal populations, and possibly the reasons underlying the modern decline at Macquarie Island. This project addresses several key research problems: (1) Why did elephant seals colonize and then abandon the VLC? (2) What does the elephant seal record reveal about Holocene climate change and sea-ice conditions? (3) What were the foraging strategies of the seals and did these strategies change over time as climate varied? (4) How does the genetic structure of the VLC seals relate to extant populations? (5) How did genetic diversity change over time and with colony decline? (6) Using ancient samples to estimate mtDNA mutation rates, what can be learned about VLC population dynamics over time? (7) What was the ecological relationship between elephant seals and Adelie penguins that occupied the same sites, but apparently at different times? The proposed work includes the professional training of young researchers and incorporation of data into graduate and undergraduate courses. Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/ Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research | ["POLYGON((162 -72,162.6 -72,163.2 -72,163.8 -72,164.4 -72,165 -72,165.6 -72,166.2 -72,166.8 -72,167.4 -72,168 -72,168 -72.6,168 -73.2,168 -73.8,168 -74.4,168 -75,168 -75.6,168 -76.2,168 -76.8,168 -77.4,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.4,162 -76.8,162 -76.2,162 -75.6,162 -75,162 -74.4,162 -73.8,162 -73.2,162 -72.6,162 -72))"] | ["POINT(165 -75)"] | false | false |
Radium and Thorium isotope data summaries from AMLR and NBP cruises to the Antarctic in 2006
|
None | 2009-03-26 | None | No project link provided | Radium and Thorium isotope data summaries from AMLR and NBP cruises to the Antarctic in 2006 Naturally occurring radium isotopes (224Ra, 226Ra, 228Ra) were used in determining lateral mixing processes which are reported in dpm/m3. Particulate organic Carbon (POC) flux was determined through measuring Thorium (234Th) reported in dpm/kg. Cruises AMLR (Antarctic Marine Living Resources) R/V Yuzhmorgeologiya Jan/2006: The research program was focused in the southern Drake Passage along the Shackelton Shelf located near the Bransfield Strait. Samples were obtained from the R/V Yuzhmorgeologiya and inflatables that were taken to island locations. Lat/Lon Bounding Box -62.2538Lat, -62.9966Lon -63.2335Lat, -59.0332Lon -59.9964Lat, -55.7612Lon -61.4995Lat, -53.9996Lon NBP (Nathaniel B. Palmer) R/V Nathaniel B. Palmer July/2006: The research was conducted in the same region of the Drake Passage as the AMLR cruise. Samples were obtained aboard the R/V Nathaniel B. Palmer Lat/Lon bounding box -60.4991Lat, -58.5613Lon -62.3599Lat, -58.0392Lon -60.2783Lat, -57.4509Lon -61.2683Lat, -54.2852Lon | [] | [] | false | false |
SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions
|
0742057 |
2009-01-01 | Dennett, Mark; Gallager, Scott |
SGER: Primary and Secondary Production and Carbon Flux Through the Microbial Community Along the Western Antarctic Marginal Ice Zone on the Oden Southern Ocean 2007 Expeditions |
The research will continue and extend the study in the Southern Ocean that was initiated during the Oden Southern Ocean 2006 expedition in collaboration with Swedish scientist Mellissa Chierici. We will quantify carbon flux through the food web in the marginal ice zone (MIZ) by measuring size fractionated primary and secondary production, grazing and carbon flux through nanoplankton (2-20 um), microplankton (20-200um), and mesoplankton (200-2000 um). Community structure, species abundance and size specific grazing rates will be quantified using a variety of techniques both underway and at ice stations along the MIZ. The proposed cruise track extends across the Drake Passage to the Western Antarctic Peninsula (WAP) with three station transects along a gradient from the open ocean through the marginal ice zone (MIZ) in the Bellinghausen and Amundsen Seas and into the Ross Sea Polynya. Ice stations along each transect will provide material to characterize production associated with annual ice. Underway measurements of primary and secondary production (chlorophyll, CDOM, microplankton, and mesoplankton) and hydrography (temperature, salinity, pH, DO, turbidity) will establish a baseline for future cruises and as support for other projects such as biogeochemical studies on carbon dioxide drawdown and trace metal work on primary production. The outcome of these measurements will be a description of nano to mesoplankton standing stocks, community structure, and carbon flux along the MIZ in the Bellinghausen and Amundsen Seas and the Ross Sea Polynya. | ["POLYGON((-168.291 -64.846,-165.018 -64.846,-161.745 -64.846,-158.472 -64.846,-155.199 -64.846,-151.926 -64.846,-148.653 -64.846,-145.38 -64.846,-142.107 -64.846,-138.834 -64.846,-135.561 -64.846,-135.561 -66.0269,-135.561 -67.2078,-135.561 -68.3887,-135.561 -69.5696,-135.561 -70.7505,-135.561 -71.9314,-135.561 -73.1123,-135.561 -74.2932,-135.561 -75.4741,-135.561 -76.655,-138.834 -76.655,-142.107 -76.655,-145.38 -76.655,-148.653 -76.655,-151.926 -76.655,-155.199 -76.655,-158.472 -76.655,-161.745 -76.655,-165.018 -76.655,-168.291 -76.655,-168.291 -75.4741,-168.291 -74.2932,-168.291 -73.1123,-168.291 -71.9314,-168.291 -70.7505,-168.291 -69.5696,-168.291 -68.3887,-168.291 -67.2078,-168.291 -66.0269,-168.291 -64.846))"] | ["POINT(-151.926 -70.7505)"] | false | false |