{"dp_type": "Dataset", "free_text": "Diamict"}
[{"awards": "0838842 Passchier, Sandra", "bounds_geometry": ["POINT(167.0833 -77.8889)"], "date_created": "Mon, 14 Jun 2021 00:00:00 GMT", "description": "This dataset contains measurements of particle-size distributions on four intervals of diamicitites from ANDRILL Site AND-2A. Carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2 and 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles.", "east": 167.0833, "geometry": ["POINT(167.0833 -77.8889)"], "keywords": "Antarctica; McMurdo Sound; Miocene; Particle Size; Pleistocene; Pliocene", "locations": "McMurdo Sound; Antarctica", "north": -77.8889, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Passchier, Sandra; Hansen, Melissa A.", "project_titles": "Determining Middle Miocene through Pliocene Changes in Paleo Ice-flow and Basal Ice Conditions in East Antarctica through Sedimentological Analyses of Core Samples", "projects": [{"proj_uid": "p0000147", "repository": "USAP-DC", "title": "Determining Middle Miocene through Pliocene Changes in Paleo Ice-flow and Basal Ice Conditions in East Antarctica through Sedimentological Analyses of Core Samples"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -77.8889, "title": "Particle-size measurements for diamictites AND-2A sediment core, McMurdo Sound", "uid": "601452", "west": 167.0833}, {"awards": "0342484 Harwood, David", "bounds_geometry": ["POINT(167 -78)"], "date_created": "Mon, 14 Jun 2021 00:00:00 GMT", "description": "This dataset contains measurements of particle-size distributions on sediment from ANDRILL Site AND-2A. Carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2 and 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles.", "east": 167.0, "geometry": ["POINT(167 -78)"], "keywords": "Andrill; Antarctica; Continental Shelf; Diamict; McMurdo Sound; Miocene; Paleoclimate; Particle Size", "locations": "McMurdo Sound; Antarctica", "north": -78.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Passchier, Sandra; Candice, Falk", "project_titles": "Collaborative Research: ANDRILL - - Investigating Antarcticas Role in Cenozoic Global Environmental Change", "projects": [{"proj_uid": "p0010297", "repository": "USAP-DC", "title": "Collaborative Research: ANDRILL - - Investigating Antarcticas Role in Cenozoic Global Environmental Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -78.0, "title": "Particle-size measurements at 3-m intervals for AND-2A sediment core, McMurdo Sound", "uid": "601451", "west": 167.0}, {"awards": "0838722 Reiners, Peter", "bounds_geometry": ["POLYGON((61.9 -67.28,63.218 -67.28,64.536 -67.28,65.854 -67.28,67.172 -67.28,68.49 -67.28,69.808 -67.28,71.126 -67.28,72.444 -67.28,73.762 -67.28,75.08 -67.28,75.08 -67.922,75.08 -68.564,75.08 -69.206,75.08 -69.848,75.08 -70.49,75.08 -71.132,75.08 -71.774,75.08 -72.416,75.08 -73.058,75.08 -73.7,73.762 -73.7,72.444 -73.7,71.126 -73.7,69.808 -73.7,68.49 -73.7,67.172 -73.7,65.854 -73.7,64.536 -73.7,63.218 -73.7,61.9 -73.7,61.9 -73.058,61.9 -72.416,61.9 -71.774,61.9 -71.132,61.9 -70.49,61.9 -69.848,61.9 -69.206,61.9 -68.564,61.9 -67.922,61.9 -67.28))"], "date_created": "Sun, 01 Jan 2012 00:00:00 GMT", "description": "Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion.\n", "east": 75.08, "geometry": ["POINT(68.49 -70.49)"], "keywords": "Antarctica; Fission Track Thermochronology; Gamburtsev Mountains; Geochronology; Marine Sediments; NBP0101; ODP1166; ODP739; Prydz Bay; Solid Earth; Southern Ocean", "locations": "Gamburtsev Mountains; Prydz Bay; Antarctica; Southern Ocean", "north": -67.28, "nsf_funding_programs": null, "persons": "Gehrels, George; Reiners, Peter; Thomson, Stuart", "project_titles": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "projects": [{"proj_uid": "p0000506", "repository": "USAP-DC", "title": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -73.7, "title": "Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "uid": "600093", "west": 61.9}, {"awards": "0838729 Hemming, Sidney", "bounds_geometry": ["POLYGON((-67.2 -58,-43.98 -58,-20.76 -58,2.46 -58,25.68 -58,48.9 -58,72.12 -58,95.34 -58,118.56 -58,141.78 -58,165 -58,165 -59.2,165 -60.4,165 -61.6,165 -62.8,165 -64,165 -65.2,165 -66.4,165 -67.6,165 -68.8,165 -70,141.78 -70,118.56 -70,95.34 -70,72.12 -70,48.9 -70,25.68 -70,2.46 -70,-20.76 -70,-43.98 -70,-67.2 -70,-67.2 -68.8,-67.2 -67.6,-67.2 -66.4,-67.2 -65.2,-67.2 -64,-67.2 -62.8,-67.2 -61.6,-67.2 -60.4,-67.2 -59.2,-67.2 -58))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion.", "east": 165.0, "geometry": ["POINT(48.9 -64)"], "keywords": "Antarctica; Fission Track Thermochronology; Gamburtsev Mountains; Geochronology; Marine Sediments; Solid Earth; Southern Ocean", "locations": "Gamburtsev Mountains; Antarctica; Southern Ocean", "north": -58.0, "nsf_funding_programs": null, "persons": "Hemming, Sidney R.", "project_titles": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "projects": [{"proj_uid": "p0000506", "repository": "USAP-DC", "title": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "uid": "600094", "west": -67.2}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Particle-size measurements for diamictites AND-2A sediment core, McMurdo Sound
|
0838842 |
2021-06-14 | Passchier, Sandra; Hansen, Melissa A. |
Determining Middle Miocene through Pliocene Changes in Paleo Ice-flow and Basal Ice Conditions in East Antarctica through Sedimentological Analyses of Core Samples |
This dataset contains measurements of particle-size distributions on four intervals of diamicitites from ANDRILL Site AND-2A. Carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2 and 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles. | ["POINT(167.0833 -77.8889)"] | ["POINT(167.0833 -77.8889)"] | false | false |
Particle-size measurements at 3-m intervals for AND-2A sediment core, McMurdo Sound
|
0342484 |
2021-06-14 | Passchier, Sandra; Candice, Falk |
Collaborative Research: ANDRILL - - Investigating Antarcticas Role in Cenozoic Global Environmental Change |
This dataset contains measurements of particle-size distributions on sediment from ANDRILL Site AND-2A. Carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2 and 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles. | ["POINT(167 -78)"] | ["POINT(167 -78)"] | false | false |
Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology
|
0838722 |
2012-01-01 | Gehrels, George; Reiners, Peter; Thomson, Stuart |
Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology |
Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion. | ["POLYGON((61.9 -67.28,63.218 -67.28,64.536 -67.28,65.854 -67.28,67.172 -67.28,68.49 -67.28,69.808 -67.28,71.126 -67.28,72.444 -67.28,73.762 -67.28,75.08 -67.28,75.08 -67.922,75.08 -68.564,75.08 -69.206,75.08 -69.848,75.08 -70.49,75.08 -71.132,75.08 -71.774,75.08 -72.416,75.08 -73.058,75.08 -73.7,73.762 -73.7,72.444 -73.7,71.126 -73.7,69.808 -73.7,68.49 -73.7,67.172 -73.7,65.854 -73.7,64.536 -73.7,63.218 -73.7,61.9 -73.7,61.9 -73.058,61.9 -72.416,61.9 -71.774,61.9 -71.132,61.9 -70.49,61.9 -69.848,61.9 -69.206,61.9 -68.564,61.9 -67.922,61.9 -67.28))"] | ["POINT(68.49 -70.49)"] | false | false |
Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology
|
0838729 |
2011-01-01 | Hemming, Sidney R. |
Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology |
Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion. | ["POLYGON((-67.2 -58,-43.98 -58,-20.76 -58,2.46 -58,25.68 -58,48.9 -58,72.12 -58,95.34 -58,118.56 -58,141.78 -58,165 -58,165 -59.2,165 -60.4,165 -61.6,165 -62.8,165 -64,165 -65.2,165 -66.4,165 -67.6,165 -68.8,165 -70,141.78 -70,118.56 -70,95.34 -70,72.12 -70,48.9 -70,25.68 -70,2.46 -70,-20.76 -70,-43.98 -70,-67.2 -70,-67.2 -68.8,-67.2 -67.6,-67.2 -66.4,-67.2 -65.2,-67.2 -64,-67.2 -62.8,-67.2 -61.6,-67.2 -60.4,-67.2 -59.2,-67.2 -58))"] | ["POINT(48.9 -64)"] | false | false |