{"dp_type": "Dataset", "free_text": "Delta"}
[{"awards": "2147045 Learman, Deric", "bounds_geometry": null, "date_created": "Mon, 16 Dec 2024 00:00:00 GMT", "description": "Shelf sediment samples were collected in Eastern Antarctica with the mega corer in 2023 (April). The sample locations and water depths are recorded in this dataset. These samples were used to collect data on organic matter (total organic carbon, total nitrogen, delta 13C (organic), delta 15N, and C to N ratios). Nutrient data (nitrate, nitrite, sulfate, and ammonia) and grain size analysis were collected on a subsample set.", "east": null, "geometry": null, "keywords": "Antarctica; Cryosphere", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Learman, Deric", "project_titles": "Collaborative Research: ANT LIA: Connecting Metagenome Potential to Microbial Function: Investigating Microbial Degradation of Complex Organic Matter Antarctic Benthic Sediments", "projects": [{"proj_uid": "p0010373", "repository": "USAP-DC", "title": "Collaborative Research: ANT LIA: Connecting Metagenome Potential to Microbial Function: Investigating Microbial Degradation of Complex Organic Matter Antarctic Benthic Sediments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Physical and geochemical data from shelf sediments eastern Antarctica", "uid": "601876", "west": null}, {"awards": "1841228 Lyons, W. Berry", "bounds_geometry": ["POINT(163.4863 -77.5607)"], "date_created": "Tue, 15 Oct 2024 00:00:00 GMT", "description": "Detailed water chemistry data from a collection of water samples at the delta of Commonwealth stream in Taylor Valley, Antarctica at even intervals across the day in 2020. The samples have been analyzed using a handheld meter for pH and temperature, ion chromatography for major ions, ICP-MS for iron concentrations", "east": 163.4863, "geometry": ["POINT(163.4863 -77.5607)"], "keywords": "Antarctica; Commonwealth Stream; Cryosphere; Diel; Inlandwaters; McMurdo Dry Valleys; Stream Chemistry; Water Chemisty", "locations": "Commonwealth Stream; McMurdo Dry Valleys; Antarctica", "north": -77.5607, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Gardner, Christopher B.", "project_titles": "Fe Behavior and Bioavailability in Sub-aerial Runoff into the Ross Sea", "projects": [{"proj_uid": "p0010483", "repository": "USAP-DC", "title": "Fe Behavior and Bioavailability in Sub-aerial Runoff into the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.5607, "title": "Commonwealth Stream Diel Water Chemistry", "uid": "601844", "west": 163.4863}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Fri, 20 Oct 2023 00:00:00 GMT", "description": "Major gas components of air data set, containing d15N, d18O of O2, dO2/N2, and dAr/N2 from the WAIS Divide ice core at high resolution. These data are used to constrain surface temperature, biosphere oxygen cycling, and firn thickness through the past \u003e60 kyr.", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "Antarctica; Delta 15N; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Gas Records; Ice Core Records; Isotope; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; WAIS; WAIS Divide", "locations": "WAIS Divide; Antarctica; WAIS", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "projects": [{"proj_uid": "p0000036", "repository": "USAP-DC", "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "d15N and d18O of air in the WAIS Divide ice core", "uid": "601747", "west": -112.05}, {"awards": null, "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 13 Oct 2023 00:00:00 GMT", "description": "This data set contains the VSMOW-SLAP d170, d180, and 170-excess data from the WAIS Divide Ice Core Project, Siple Dome and Taylor Dome, along with the published and VSMOW-SLAP normalized d170, d180, and 170-excess for Vostok [Landais et al.2008], EPICA Dome C and Talos Dome [Wrinkler et al.,2012]. The data cover the Last Glacial Maximum (25-20 ka), through the Early Holocene (12-9 ka) and into present-day (past 2 kyr).", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Delta 18O; Delta O-17; Epica Dome C; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Talos Dome; Taylor Dome; Vostok", "locations": "Talos Dome; Siple Dome; Taylor Dome; Talos Dome; Epica Dome C; Vostok; Antarctica; Siple Dome; Taylor Dome; Epica Dome C", "north": -60.0, "nsf_funding_programs": null, "persons": "Steig, Eric J.; Schoenemann, Spruce", "project_titles": null, "projects": null, "repositories": null, "science_programs": "WAIS Divide Ice Core", "south": -90.0, "title": "VSMOW-SLAP d170, d180, and 17O-excess data from WAIS Divide Ice Core Project, Siple Dome and Taylor Dome", "uid": "601743", "west": -180.0}, {"awards": "1744832 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(159.3562 -76.73243)"], "date_created": "Tue, 22 Nov 2022 00:00:00 GMT", "description": "These data cover the penultimate glacial period (MIS 6) and parts of MIS5, in Allan Hills ice. The d18Oatm data are useful for dating the core, and the 15N is useful for inferring firn thickness. Importantly, the data have only been corrected for gas loss using published methods (i.e. Baggenstos et al. 2017), but not for recently recognized (and unpublished) effects of declining contemporary atmospheric O2/N2 due to fossil fuel burning. These changes unfortunately affect the La Jolla Air standard gas O2/N2 ratio that is used in our lab to make the measurements. Users of this data are encouraged to contact Jeff Severinghaus for help in making these novel corrections to the standard gas.", "east": 159.3562, "geometry": ["POINT(159.3562 -76.73243)"], "keywords": "18O; Allan Hills; Allan Hills Blue Ice; Antarctica; Blue Ice; Delta 15N; Delta 18O; Dole Effect; Firn Thickness; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Chronology; Ice Core Records", "locations": "Allan Hills; Antarctica", "north": -76.73243, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Center for Oldest Ice Exploration; Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area ", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}, {"proj_uid": "p0010253", "repository": "USAP-DC", "title": "Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73243, "title": "Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 \u0026 2022", "uid": "601620", "west": 159.3562}, {"awards": "2031442 Learman, Deric", "bounds_geometry": null, "date_created": "Thu, 08 Sep 2022 00:00:00 GMT", "description": "Shelf sediment samples were collected around the Antarctic Peninsular with the mega corer in 2020 (Nov. to Dec.). The sample locations and water depths are recorded in this dataset. These samples were used to collect data on organic matter (total organic carbon, total nitrogen, delta 13C (organic), delta 15N, and C to N ratios). Nutrient data (nitrate, nitrite, sulfate, and ammonia) and grain size analysis were collected on a subsample set (10). ", "east": null, "geometry": null, "keywords": "Antarctica; Antarctic Peninsula; Grain Size; Grain Size Analysis; Marine Geoscience; Marine Sediments; Organic Matter Geochemistry; Sediment Core Data; Shelf Sediments; Weddell Sea", "locations": "Weddell Sea; Antarctic Peninsula; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Learman, Deric", "project_titles": "RAPID: Meta-genomic and Transcriptomic Investigation of Complex Organic Matter Degradation in Antarctic Benthic Sediments", "projects": [{"proj_uid": "p0010235", "repository": "USAP-DC", "title": "RAPID: Meta-genomic and Transcriptomic Investigation of Complex Organic Matter Degradation in Antarctic Benthic Sediments"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Physical and geochemical data from shelf sediments near the Antartic Pennisula", "uid": "601607", "west": null}, {"awards": "1946326 Doran, Peter", "bounds_geometry": ["POLYGON((163.093642 -77.592484,163.1049267 -77.592484,163.1162114 -77.592484,163.1274961 -77.592484,163.1387808 -77.592484,163.1500655 -77.592484,163.1613502 -77.592484,163.1726349 -77.592484,163.1839196 -77.592484,163.1952043 -77.592484,163.206489 -77.592484,163.206489 -77.5986389,163.206489 -77.6047938,163.206489 -77.6109487,163.206489 -77.6171036,163.206489 -77.6232585,163.206489 -77.6294134,163.206489 -77.6355683,163.206489 -77.6417232,163.206489 -77.6478781,163.206489 -77.654033,163.1952043 -77.654033,163.1839196 -77.654033,163.1726349 -77.654033,163.1613502 -77.654033,163.1500655 -77.654033,163.1387808 -77.654033,163.1274961 -77.654033,163.1162114 -77.654033,163.1049267 -77.654033,163.093642 -77.654033,163.093642 -77.6478781,163.093642 -77.6417232,163.093642 -77.6355683,163.093642 -77.6294134,163.093642 -77.6232585,163.093642 -77.6171036,163.093642 -77.6109487,163.093642 -77.6047938,163.093642 -77.5986389,163.093642 -77.592484))"], "date_created": "Wed, 09 Feb 2022 00:00:00 GMT", "description": "Location and metadata of samples collected from perched delta deposits along modern stream channels in lower Taylor Valley. Sample collection used equipment and followed procedures from the Desert Research Institute Luminescence Laboratory in Reno, NV.", "east": 163.206489, "geometry": ["POINT(163.1500655 -77.6232585)"], "keywords": "Antarctica; Sample/collection Description; Sample/Collection Description; Sample Location; Taylor Valley", "locations": "Taylor Valley; Antarctica", "north": -77.592484, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Doran, Peter; Stone, Michael", "project_titles": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers", "projects": [{"proj_uid": "p0010294", "repository": "USAP-DC", "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LTER", "south": -77.654033, "title": "EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: Infrared Stimulated Luminescence data", "uid": "601520", "west": 163.093642}, {"awards": "0732625 Leventer, Amy; 1433140 Domack, Eugene", "bounds_geometry": ["POLYGON((-69 -58,-67.7 -58,-66.4 -58,-65.1 -58,-63.8 -58,-62.5 -58,-61.2 -58,-59.9 -58,-58.6 -58,-57.3 -58,-56 -58,-56 -59,-56 -60,-56 -61,-56 -62,-56 -63,-56 -64,-56 -65,-56 -66,-56 -67,-56 -68,-57.3 -68,-58.6 -68,-59.9 -68,-61.2 -68,-62.5 -68,-63.8 -68,-65.1 -68,-66.4 -68,-67.7 -68,-69 -68,-69 -67,-69 -66,-69 -65,-69 -64,-69 -63,-69 -62,-69 -61,-69 -60,-69 -59,-69 -58))"], "date_created": "Mon, 15 Nov 2021 00:00:00 GMT", "description": "This data set contains an age vs depth model and measurements of magnetic susceptibility, benthic foraminifera Bulimina aculeata d18O and d13C, bulk sediment GDGT data, and diatom assemblage data from USAP LMG13-11 JKC-1 sediment core (0-100 cm) archived at the Oregon State University ACC repository. All stable isotope and GDGT measurements were made at the University of South Florida College of Marine Science. Diatom assemblages were counted at Colgate University. The data set includes all replicate measurements. Details of the entire data set and all relevant methods are provided in Browne et al (submitted, 2021)", "east": -56.0, "geometry": ["POINT(-62.5 -63)"], "keywords": "Antarctica; Antarctic Peninsula; Delta 13C; Delta 18O; Paleoceanography; Temperature", "locations": "Antarctica; Antarctic Peninsula", "north": -58.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science", "persons": "Shevenell, Amelia", "project_titles": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans", "projects": [{"proj_uid": "p0000101", "repository": "USAP-DC", "title": "Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LARISSA", "south": -68.0, "title": "LMG13-11 JKC-1 Paleoceanographic data", "uid": "601485", "west": -69.0}, {"awards": "1443386 Emslie, Steven", "bounds_geometry": ["POLYGON((-58.62 -62.257,-58.6199 -62.257,-58.6198 -62.257,-58.6197 -62.257,-58.6196 -62.257,-58.6195 -62.257,-58.6194 -62.257,-58.6193 -62.257,-58.6192 -62.257,-58.6191 -62.257,-58.619 -62.257,-58.619 -62.2571,-58.619 -62.2572,-58.619 -62.2573,-58.619 -62.2574,-58.619 -62.2575,-58.619 -62.2576,-58.619 -62.2577,-58.619 -62.2578,-58.619 -62.2579,-58.619 -62.258,-58.6191 -62.258,-58.6192 -62.258,-58.6193 -62.258,-58.6194 -62.258,-58.6195 -62.258,-58.6196 -62.258,-58.6197 -62.258,-58.6198 -62.258,-58.6199 -62.258,-58.62 -62.258,-58.62 -62.2579,-58.62 -62.2578,-58.62 -62.2577,-58.62 -62.2576,-58.62 -62.2575,-58.62 -62.2574,-58.62 -62.2573,-58.62 -62.2572,-58.62 -62.2571,-58.62 -62.257))"], "date_created": "Sun, 11 Oct 2020 00:00:00 GMT", "description": "Many types of animal tissues are increasingly being used for stable isotope analysis, with their application dependent on the time frame they reflect and their availability for collection. Here, we investigated the isotopic values (\u03b413C and \u03b415N) of four tissues (feather, skin, toenail, and bone) collected from fledgling-period chick carcasses of three species of pygoscelid penguins to compare the variability and accuracy of the data among tissues. Samples were collected at 25 de Mayo/King George Island during the 2017/18 austral summer. Chick carcasses are commonly found at active penguin colonies, and \u201copportunistic sampling\u201d can easily be performed without disturbing nesting penguins. A total of 25\u201336 carcasses per species were sampled at active colonies of Ad\u00e9lie Pygoscelis adeliae, Gentoo P. papua, and Chinstrap P. antarcticus penguins. A linear mixed model showed that \u03b413C values varied significantly between tissues, presumably due to tissue-specific isotopic discrimination. In contrast, the only tissue with significantly different \u03b415N values was toenail. Stable isotope data revealed dietary differences among species, with Gentoo Penguins having higher average isotopic values in tissues compared to Ad\u00e9lie and Chinstrap penguins. In addition, Chinstrap Penguins showed a consistent, but not statistically significant, trend in having higher \u03b413C values compared to Ad\u00e9lie Penguins. Gentoo Penguins displayed the highest isotopic variability of any species for all tissues. Isotopic composition was most variable in skin in all three species making skin the least reliable tissue for isotope analysis, whereas isotopic values were least variable in toenails. Comparison of isotopic values between two bones (tibiotarsus and coracoid) showed no significant differences in isotopic values, indicating that when the same bone is not available for sampling from carcasses, sampling of any major skeletal element is likely to provide a meaningful comparison. These results allow for more informed opportunistic sampling to accurately estimate and compare penguin diet among species and between ancient and active colonies.", "east": -58.619, "geometry": ["POINT(-58.6195 -62.2575)"], "keywords": "25 De Mayo/King George Island; Antarctica; Biota; Delta 13C; Delta 15N; Dietary Shifts; Opportunistic Sampling; Penguin; Pygoscelis Penguins; Stranger Point", "locations": "Stranger Point; Antarctica; 25 De Mayo/King George Island", "north": -62.257, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ciriani, Yanina; Emslie, Steven D.", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "projects": [{"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -62.258, "title": "Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica", "uid": "601382", "west": -58.62}, {"awards": "1043167 White, James", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Mon, 27 Jul 2020 00:00:00 GMT", "description": "The original water stable isotope data for the WAIS Divide Deep Ice Core was generated under the University of Colorado INSTAAR Stable Isotope Lab (NSF Award# 1443328). This data set contains high-resolution dD and d18O data for the West Antarctic Ice Sheet (WAIS) Divide Ice core. Drilling was initiated in 2006 and completed in 2011, and subsequent analyses on the ice were performed at the University of Colorado INSTAAR Stable Isotope Lab using Continuous Flow Analysis (CFA), completed in 2015 and described in Jones et al. (2017). The targeted resampling of the WAIS Divide Ice core (1035.4 to 1368.2 m) was completed in 2019 (NSF OPP - Antarctic Glaciology 1807522) to replace data analyzed on an older generation Laser Absorption Spectroscopy instrument. The resampling interval was identified using information theory (Garland and Jones et al. 2018). \r\n", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Delta 18O; Isotope; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "locations": "Antarctica; WAIS Divide; West Antarctic Ice Sheet", "north": -79.481, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology", "persons": "Jones, Tyler R.; Morris, Valerie; Garland, Joshua; Vaughn, Bruce; White, James", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "projects": [{"proj_uid": "p0000078", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Resampling of Deep Polar Ice Cores using Information Theory", "uid": "601365", "west": -112.1115}, {"awards": "1443482 Mak, John", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 09 Jul 2020 00:00:00 GMT", "description": "Data from measurement of CO mixing ratios and stable isotopes from the South Pole Ice Core for the first ca 10,000 years BP", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; CO; Delta 13C; Delta 18O; South Pole; SPICEcore", "locations": "Antarctica; South Pole", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Mak, John", "project_titles": "Collaborative Research: Using Stable Isotopes to Constrain the Atmospheric Carbon Monoxide Budget over the Last 20,000 Years", "projects": [{"proj_uid": "p0010117", "repository": "USAP-DC", "title": "Collaborative Research: Using Stable Isotopes to Constrain the Atmospheric Carbon Monoxide Budget over the Last 20,000 Years"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Carbon monoxide mixing ratios and stable isotopic values, SPICE", "uid": "601356", "west": -180.0}, {"awards": "1807522 Jones, Tyler", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Tue, 26 May 2020 00:00:00 GMT", "description": "The original water stable isotope data for the WAIS Divide Deep Ice Core was generated under the University of Colorado INSTAAR Stable Isotope Lab (NSF Award# 1443328). This data set contains high-resolution dD and d18O data for the West Antarctic Ice Sheet (WAIS) Divide Ice core. Drilling was initiated in 2006 and completed in 2011, and subsequent analyses on the ice were performed at the University of Colorado INSTAAR Stable Isotope Lab using Continuous Flow Analysis (CFA). The targeted resampling of the WAIS Divide Ice core (1035.4 - 1368.2m) occurred for this grant (NSF OPP - Antarctic Glaciology 1807522) to replace data analyzed on an older generation Laser Absorption Spectroscopy instrument. The resampling interval was identified using information theory.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Snow/ice; Snow/Ice; WAIS Divide Ice Core; Water Isotopes; West Antarctic Ice Sheet", "locations": "Antarctica; West Antarctic Ice Sheet", "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Morris, Valerie; Jones, Tyler R.; Vaughn, Bruce; White, James", "project_titles": "Collaborative Research: Targeted resampling of deep polar ice cores using information theory", "projects": [{"proj_uid": "p0010100", "repository": "USAP-DC", "title": "Collaborative Research: Targeted resampling of deep polar ice cores using information theory"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Mid-Holocene high-resolution water isotope time series for the WAIS Divide ice core", "uid": "601326", "west": -112.1115}, {"awards": "1341612 Bowser, Samuel", "bounds_geometry": ["POINT(163.5117 -77.57623)"], "date_created": "Thu, 05 Dec 2019 00:00:00 GMT", "description": "Photographs taken from helo operating at 500 ft of the shoreline bounding Explorers Cove in late January, illustrating typical sea ice conditions, extent of shoreline moat, ephemeral snow melt input, nearshore small ponds and tide pools, Commonwealth and Wales Glacier deltas, evaporite deposits, and landslides along the northern/northeastern slopes of Mount Barnes.", "east": 163.5117, "geometry": ["POINT(163.5117 -77.57623)"], "keywords": "Aerial Imagery; Antarctica; Camera; Delta; Freshwater; Helicopter; Moat; Shoreline Survey; Small Ponds; Snow Melt; Tide Pools", "locations": "Antarctica", "north": -77.57623, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Bowser, Samuel; Alexander, Steve", "project_titles": "Assembling and Mining the Genomes of Giant Antarctic Foraminifera", "projects": [{"proj_uid": "p0000004", "repository": "USAP-DC", "title": "Assembling and Mining the Genomes of Giant Antarctic Foraminifera"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.57623, "title": "Aerial survey of Explorers Cove shoreline, late January 2005", "uid": "601229", "west": 163.5117}, {"awards": "1443420 Dodd, Justin", "bounds_geometry": ["POINT(167.083333 -77.888889)"], "date_created": "Sun, 27 Oct 2019 00:00:00 GMT", "description": "The Andrill-1B (AND-1B) sediment core from under the Ross Ice Shelf in McMurdo Sound, Antarctica, recovered a mid to late Pliocene (~4.68 to 3.44 Ma) age diatomite unit with d18Odiatom values that range from +32.6 to +37.6 \u2030 (n=50 ", "east": 167.083333, "geometry": ["POINT(167.083333 -77.888889)"], "keywords": "And-1B; Andrill; Antarctica; Chemistry:sediment; Chemistry:Sediment; Delta 18O; Diatom; Mass Spectrometer; Oxygen Isotope; Paleoclimate; Pliocene; Sediment; Wais Project; West Antarctic Ice Sheet", "locations": "Antarctica; West Antarctic Ice Sheet", "north": -77.888889, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Dodd, Justin; Abbott, Tirzah", "project_titles": "Diatom and Oxygen Isotope Evidence of Pliocene Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography", "projects": [{"proj_uid": "p0010042", "repository": "USAP-DC", "title": "Diatom and Oxygen Isotope Evidence of Pliocene Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "ANDRILL", "south": -77.888889, "title": "Diatom Oxygen Isotope Evidence of Pliocene (~4.68 to 3.44 Ma) Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography", "uid": "601220", "west": 167.083333}, {"awards": "1826712 McMahon, Kelton; 1443386 Emslie, Steven; 1443585 Polito, Michael; 1443424 McMahon, Kelton", "bounds_geometry": ["POLYGON((-59 -62,-58.9 -62,-58.8 -62,-58.7 -62,-58.6 -62,-58.5 -62,-58.4 -62,-58.3 -62,-58.2 -62,-58.1 -62,-58 -62,-58 -62.1,-58 -62.2,-58 -62.3,-58 -62.4,-58 -62.5,-58 -62.6,-58 -62.7,-58 -62.8,-58 -62.9,-58 -63,-58.1 -63,-58.2 -63,-58.3 -63,-58.4 -63,-58.5 -63,-58.6 -63,-58.7 -63,-58.8 -63,-58.9 -63,-59 -63,-59 -62.9,-59 -62.8,-59 -62.7,-59 -62.6,-59 -62.5,-59 -62.4,-59 -62.3,-59 -62.2,-59 -62.1,-59 -62))"], "date_created": "Tue, 24 Sep 2019 00:00:00 GMT", "description": "Radiocarbon dates from pygoscelid penguin tissues from ornithogenic soils and beach deposits at Stranger Point, King George (25 de Mayo) Island, Antarctic Peninsula. Uncorrected dates are in radiocarbon years before present (BP); calibrated dates were corrected for the marine carbon reservoir effect (delta R = 700 +/- 50 years) and calibrated with Calib 7.0.4 to provide 2\u03c3 ranges in calendar years BP. All dates except were completed at the Woods Hole National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility and are designated with OS numbers. Localities include ancient penguin breedings sites (mounds, M), active colonies (I9, B3), and a mid-Holocene marine beach deposit (Pingfo 1).", "east": -58.0, "geometry": ["POINT(-58.5 -62.5)"], "keywords": "Abandoned Colonies; Antarctica; Antarctic Peninsula; Beach Deposit; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Holocene; Penguin; Radiocarbon; Radiocarbon Dates; Snow/ice; Snow/Ice; Stranger Point", "locations": "Stranger Point; Antarctic Peninsula; Antarctica", "north": -62.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Emslie, Steven D.", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "projects": [{"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -63.0, "title": "Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula", "uid": "601212", "west": -59.0}, {"awards": "1443710 Severinghaus, Jeffrey", "bounds_geometry": ["POINT(0 -90)"], "date_created": "Sat, 02 Feb 2019 00:00:00 GMT", "description": "This data set includes major atmospheric gas and gas isotope data from the SPICECORE project, which recovered a 1750-m ice core at the South Pole in 2015. 15N, 18O of O2, O2/N2, and Ar/N2 are included.", "east": 0.0, "geometry": ["POINT(0 -90)"], "keywords": "Antarctica; Antarctic Ice Sheet; Chemistry:gas; Chemistry:Gas; Chemistry:ice; Chemistry:Ice; Delta 18O; Dole Effect; Firn Thickness; Gas Isotopes; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Gravitational Settling; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Inert Gases; Nitrogen; Nitrogen Isotopes; Oxygen; Oxygen Isotope; Snow/ice; Snow/Ice; South Pole; SPICEcore", "locations": "South Pole; Antarctic Ice Sheet; Antarctica", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Severinghaus, Jeffrey P.", "project_titles": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core", "projects": [{"proj_uid": "p0010005", "repository": "USAP-DC", "title": "Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2", "uid": "601152", "west": 0.0}, {"awards": "1443263 Higgins, John; 1443306 Mayewski, Paul", "bounds_geometry": ["POLYGON((159.35343 -76.73165,159.360199 -76.73165,159.366968 -76.73165,159.373737 -76.73165,159.380506 -76.73165,159.387275 -76.73165,159.394044 -76.73165,159.400813 -76.73165,159.407582 -76.73165,159.414351 -76.73165,159.42112 -76.73165,159.42112 -76.731833,159.42112 -76.732016,159.42112 -76.732199,159.42112 -76.732382,159.42112 -76.732565,159.42112 -76.732748,159.42112 -76.732931,159.42112 -76.733114,159.42112 -76.733297,159.42112 -76.73348,159.414351 -76.73348,159.407582 -76.73348,159.400813 -76.73348,159.394044 -76.73348,159.387275 -76.73348,159.380506 -76.73348,159.373737 -76.73348,159.366968 -76.73348,159.360199 -76.73348,159.35343 -76.73348,159.35343 -76.733297,159.35343 -76.733114,159.35343 -76.732931,159.35343 -76.732748,159.35343 -76.732565,159.35343 -76.732382,159.35343 -76.732199,159.35343 -76.732016,159.35343 -76.731833,159.35343 -76.73165))"], "date_created": "Wed, 17 Oct 2018 00:00:00 GMT", "description": "Stable water isotope data for the surface ice samples (listed as point numbers \u00ad coordinates provided) collected at the Allan Hills Blue ice area have been generated under a collaborative effort by the University of Maine Climate Change Institute (NSF Award#1443306) and Princeton University (NSF Award# 1443263). This data set contains stable isotope data (dD, d18O) of meltwater samples collected from the\r\narea(76.73165 to 76.73348 S,\u00a0159.35343 to 159.42112 E).", "east": 159.42112, "geometry": ["POINT(159.387275 -76.732565)"], "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Gas Records; Ice Core Records; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "locations": "Antarctica; Allan Hills; Transantarctic Mountains", "north": -76.73165, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73348, "title": "Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area", "uid": "601130", "west": 159.35343}, {"awards": "1443306 Mayewski, Paul; 1443263 Higgins, John", "bounds_geometry": ["POINT(159.35507 -76.73286)"], "date_created": "Wed, 17 Oct 2018 00:00:00 GMT", "description": "Stable water isotope data for the ice core drilled at the Allan Hills Blue ice area have been generated under a collaborative effort by the University of Maine Climate Change Institute (NSF Award#1443306) and Princeton University (NSF Award# 1443263). This data set contains \r\nstable isotope data (dD, d18O) of meltwater samples collected from the ice core AH-1502 (76.73286 S, 159.35507 E) was drilled in 2015-16 field season to 197 meters below the surface.", "east": 159.35507, "geometry": ["POINT(159.35507 -76.73286)"], "keywords": "Allan Hills; Allan Hills Project; Antarctica; Blue Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Chemistry; Ice Core Records; Isotope Data; Oxygen; Snow/ice; Snow/Ice; Stable Water Isotopes; Transantarctic Mountains", "locations": "Allan Hills; Antarctica; Transantarctic Mountains", "north": -76.73286, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73286, "title": "Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area", "uid": "601129", "west": 159.35507}, {"awards": "1443306 Mayewski, Paul; 1443263 Higgins, John", "bounds_geometry": ["POINT(159.3562 -76.73243)"], "date_created": "Tue, 16 Oct 2018 00:00:00 GMT", "description": "Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills\r Blue ice area have been generated under a collaborative effort by the\r University of Maine Climate Change Institute (NSF Award#1443263) and\r Princeton University (NSF Award# 1443263). This data set contains stable isotope data (dD, d18O) of meltwater samples collected from the\r ice core AH-1503 (76.73243 S,\u00a0159.3562 E). Ice core site AH-1503 used the same borehole as AH- BIT58 drilled down to 124 m during the 2011-12 field season. All drilling was conducted with a 3\" Eclipse drill (Ice Drilling Design and Operations (IDDO)).\r\n", "east": 159.3562, "geometry": ["POINT(159.3562 -76.73243)"], "keywords": "Allan Hills; Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; Delta 18O; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Record; Mass Spectrometry; Stable Water Isotopes", "locations": "Allan Hills; Antarctica", "north": -76.73243, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen", "project_titles": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area", "projects": [{"proj_uid": "p0000760", "repository": "USAP-DC", "title": "Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73243, "title": "Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area", "uid": "601128", "west": 159.3562}, {"awards": "0538657 Severinghaus, Jeffrey", "bounds_geometry": ["POLYGON((-113 -79,-112.8 -79,-112.6 -79,-112.4 -79,-112.2 -79,-112 -79,-111.8 -79,-111.6 -79,-111.4 -79,-111.2 -79,-111 -79,-111 -79.1,-111 -79.2,-111 -79.3,-111 -79.4,-111 -79.5,-111 -79.6,-111 -79.7,-111 -79.8,-111 -79.9,-111 -80,-111.2 -80,-111.4 -80,-111.6 -80,-111.8 -80,-112 -80,-112.2 -80,-112.4 -80,-112.6 -80,-112.8 -80,-113 -80,-113 -79.9,-113 -79.8,-113 -79.7,-113 -79.6,-113 -79.5,-113 -79.4,-113 -79.3,-113 -79.2,-113 -79.1,-113 -79))"], "date_created": "Fri, 18 Aug 2017 00:00:00 GMT", "description": "This data set contains measurements of d18Oatm (d18O of O2), d15N, dAr/N2, and dO2/N2 in gas bubbles from the WAIS Divide ice core. The time resolution is variable throughout the record but is ~100 years on average (from 65 ka to present). All measurements were made in the Noble Gas Isotope Laboratory at Scripps Institution of Oceanography (La Jolla, CA). The data set includes all replicate measurements as well as replicate-mean values and a calculation of measurement precision (pooled standard deviation). The second sheet of this data set includes fitted d18Oatm curves for the past 50 ka from both the WAIS Divide and Siple Dome Antarctic ice cores, both on the WD2014 timescale (Buizert et al., 2015). The second sheet also includes calculations of the time derivative of d18Oatm and d e LAND in both ice cores individual as well as in a composite record. Details of the entire data set and all relevant methods are provided in Seltzer et al., 2017.", "east": -111.0, "geometry": ["POINT(-112 -79.5)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; WAIS Divide Ice Core", "locations": "Antarctica", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Seltzer, Alan; Severinghaus, Jeffrey P.", "project_titles": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate", "projects": [{"proj_uid": "p0000036", "repository": "USAP-DC", "title": "Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -80.0, "title": "WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND", "uid": "601041", "west": -113.0}, {"awards": "0944197 Waddington, Edwin", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Tue, 28 Mar 2017 00:00:00 GMT", "description": "The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ~68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP) have been dated using annual-layer counting. Here we present a chronology for the deep part of the core (67.8-31.2 ka BP), which is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of d15N-N2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. Internally consistent solutions can be found only when assuming little to no influence of impurity content on densification rates, contrary to a recently proposed hypothesis. We synchronize the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu Cave speleothem record. The small Delta age at WD provides valuable opportunities to investigate the timing of atmospheric greenhouse gas variations relative to Antarctic climate, as well as the interhemispheric phasing of the \\\"bipolar seesaw\\\".\n\nWe present the WD2014 chronology for the upper part (0-2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposition of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5% of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1% of the age at three abrupt climate change events between 27 and 31ka. WD2014 has consistently younger ages than Greenland ice core chronologies during most of the Holocene. For the Younger Dryas-Preboreal transition (11.595 ka; 24 years younger) and the Bolling-Allerod Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity, atmospheric mineral dust, and atmospheric methane concentrations.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Depth-Age-Model; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.481, "nsf_funding_programs": null, "persons": "Fudge, T. J.", "project_titles": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core", "projects": [{"proj_uid": "p0000026", "repository": "USAP-DC", "title": "Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)", "uid": "601015", "west": -112.1115}, {"awards": "1043167 White, James", "bounds_geometry": ["POINT(-112.08 -79.47)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": -112.08, "geometry": ["POINT(-112.08 -79.47)"], "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.47, "nsf_funding_programs": null, "persons": "White, James; Morris, Valerie; Vaughn, Bruce; Jones, Tyler R.", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "projects": [{"proj_uid": "p0000078", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "600169", "west": -112.08}, {"awards": "1245821 Brook, Edward J.", "bounds_geometry": ["POINT(162.167 -77.733)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": ["POINT(162.167 -77.733)"], "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica; Taylor Glacier", "north": -77.733, "nsf_funding_programs": null, "persons": "Brook, Edward J.", "project_titles": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "projects": [{"proj_uid": "p0000283", "repository": "USAP-DC", "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.733, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "600163", "west": 162.167}, {"awards": "0838849 Bender, Michael", "bounds_geometry": ["POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an \u0027International Climate Park\u0027 in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica.\n", "east": 159.41667, "geometry": ["POINT(159.29167 -76.7)"], "keywords": "Allan Hills; Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Ice Core Records; Paleoclimate; Solid Earth", "locations": "Allan Hills; Antarctica", "north": -76.66667, "nsf_funding_programs": null, "persons": "Bender, Michael", "project_titles": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "projects": [{"proj_uid": "p0000046", "repository": "USAP-DC", "title": "Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Allan Hills", "south": -76.73333, "title": "Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)", "uid": "600099", "west": 159.16667}, {"awards": "0739491 Sowers, Todd", "bounds_geometry": ["POLYGON((-180 90,-144 90,-108 90,-72 90,-36 90,0 90,36 90,72 90,108 90,144 90,180 90,180 72,180 54,180 36,180 18,180 0,180 -18,180 -36,180 -54,180 -72,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -72,-180 -54,-180 -36,-180 -18,-180 0,-180 18,-180 36,-180 54,-180 72,-180 90))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This data set contains depth profiles for delta carbon-13 (\u0026#948;13C) and delta deuterium (\u0026#948;D) of methane (CH\u003csub\u003e4\u003c/sub\u003e) in South Pole firn air. The investigators obtained air samples from two boreholes during December 2008 and January 2009, and subsequently determined isotope ratios at 18 depths. The profiles represent a roughly 100-year history of the isotopic composition of CH\u003csub\u003e4\u003c/sub\u003e at South Pole Station (no depth-age model provided).\n\nData are available via FTP as an ASCII text file (.txt) and a Microsoft Excel file (.xlsx).", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Isotope; Paleoclimate; Snow/ice; Snow/Ice; South Pole", "locations": "Antarctica; South Pole", "north": 90.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.", "project_titles": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air", "projects": [{"proj_uid": "p0000162", "repository": "USAP-DC", "title": "Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Methane Isotopes in South Pole Firn Air, 2008", "uid": "609502", "west": -180.0}, {"awards": "0230260 Bender, Michael", "bounds_geometry": ["POINT(106.8 -72.4667)"], "date_created": "Tue, 10 Jul 2007 00:00:00 GMT", "description": "This data set includes a time scale for the Vostok ice core, retrieved from Vostok Station on the East Antarctic Plateau. This chronology is derived by orbitally tuning to molecular oxygen to nitrogen (O\u003csub\u003e2\u003c/sub\u003e/N\u003csub\u003e2\u003c/sub\u003e) ratios in occluded air for depths deeper than 1550 m (greater than 112,000 years old), and by gas correlation to the Greenland Ice Sheet Project 2 (GISP2) chronology for the ice core section that is shallower than 1422 m (less than 102,000 years old). Because of poor gas preservation in air bubbles in shallower depths, investigators could only constrain the Vostok chronology for the section deeper than 1550 m by O\u003csub\u003e2\u003c/sub\u003e/N\u003csub\u003e2\u003c/sub\u003e. Thus for the shallower section of the core, they synchronized the Vostok delta oxygen-18 (\u0026delta;\u003csup\u003e18\u003c/sup\u003eO) and methane (CH\u003csub\u003e4\u003c/sub\u003e) measurements to those of the GISP2 to obtain the chronology (see Bender, et al. 2006). Note, CH\u003csub\u003e4\u003c/sub\u003e data are not included in this data set.\n\nInvestigators analyzed the O\u003csub\u003e2\u003c/sub\u003e/N\u003csub\u003e2\u003c/sub\u003e and the\u003cem\u003e\u003cstrong\u003e \u003c/strong\u003e\u003c/em\u003e\u0026delta;\u003csup\u003e18\u003c/sup\u003eO record ratios for approximately the past 115,000 to 400,000 years in the Vostok ice core. They combined new measurements for O\u003csub\u003e2\u003c/sub\u003e/N\u003csub\u003e2\u003c/sub\u003e and \u0026delta;\u003csup\u003e18\u003c/sup\u003eO with data from Bender (2002) and Petit, et al. (1999), respectively.\n\nData are in Microsoft Excel format and are available via FTP.", "east": 106.8, "geometry": ["POINT(106.8 -72.4667)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Lake Vostok; Paleoclimate; Vostok; Vostok Ice Core", "locations": "Lake Vostok; Antarctica; Vostok", "north": -72.4667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bender, Michael; Suwa, Makoto", "project_titles": "Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core", "projects": [{"proj_uid": "p0000257", "repository": "USAP-DC", "title": "Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.4667, "title": "Trapped Gas Composition and Chronology of the Vostok Ice Core", "uid": "609311", "west": 106.8}, {"awards": "9526556 Sowers, Todd", "bounds_geometry": ["POINT(-148.3023 -81.403)"], "date_created": "Mon, 09 Jul 2007 00:00:00 GMT", "description": "This data set includes records of the delta carbon-13 (\u0026delta;\u003csup\u003e13\u003c/sup\u003eC) of methane (CH\u003csub\u003e4\u003c/sub\u003e) in firn air from the South Pole and trapped in bubbles in a short ice core from Siple Dome, Antarctica. Using two firn air samples, one from January 1995 and the other from January 2001, investigators reconstructed records of the isotopic composition of paleoatmospheric methane covering the last 2 centuries, from 1820 to 2001. \n\nData are in Microsoft Excel and Microsoft Word formats and are available via FTP.", "east": -148.3023, "geometry": ["POINT(-148.3023 -81.403)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Siple Dome; Snow/ice; Snow/Ice; South Pole", "locations": "South Pole; Antarctica; Siple Dome", "north": -81.403, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Sowers, Todd A.", "project_titles": "Constructing Paleoatmospheric Records of the Isotopic Composition of Methane and Nitrous Oxide", "projects": [{"proj_uid": "p0000611", "repository": "USAP-DC", "title": "Constructing Paleoatmospheric Records of the Isotopic Composition of Methane and Nitrous Oxide"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.403, "title": "Carbon-13 Isotopic Composition of Atmospheric Methane in Firn Air, South Pole and Siple Dome, Antarctica", "uid": "609310", "west": -148.3023}, {"awards": "9980691 Wahlen, Martin", "bounds_geometry": ["POINT(-148.82 -81.66)"], "date_created": "Thu, 11 Dec 2003 00:00:00 GMT", "description": "These data are CO2 concentrations of the air occulded in Siple Dome ice core, Antarctica. The study was conducted between January 2001 and March 2003 on a deep ice core from Siple Dome Core A, located at 81.66 S, 148.82 W.", "east": -148.82, "geometry": ["POINT(-148.82 -81.66)"], "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; CO2; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "locations": "Siple Dome; Antarctica", "north": -81.66, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Ahn, Jinho; Wahlen, Martin; Deck, Bruce", "project_titles": "CO2 and Delta 13CO2 in Antarctic Ice Cores", "projects": [{"proj_uid": "p0000166", "repository": "USAP-DC", "title": "CO2 and Delta 13CO2 in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.66, "title": "Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica", "uid": "609202", "west": -148.82}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Physical and geochemical data from shelf sediments eastern Antarctica
|
2147045 |
2024-12-16 | Learman, Deric |
Collaborative Research: ANT LIA: Connecting Metagenome Potential to Microbial Function: Investigating Microbial Degradation of Complex Organic Matter Antarctic Benthic Sediments |
Shelf sediment samples were collected in Eastern Antarctica with the mega corer in 2023 (April). The sample locations and water depths are recorded in this dataset. These samples were used to collect data on organic matter (total organic carbon, total nitrogen, delta 13C (organic), delta 15N, and C to N ratios). Nutrient data (nitrate, nitrite, sulfate, and ammonia) and grain size analysis were collected on a subsample set. | [] | [] | false | false |
Commonwealth Stream Diel Water Chemistry
|
1841228 |
2024-10-15 | Gardner, Christopher B. |
Fe Behavior and Bioavailability in Sub-aerial Runoff into the Ross Sea |
Detailed water chemistry data from a collection of water samples at the delta of Commonwealth stream in Taylor Valley, Antarctica at even intervals across the day in 2020. The samples have been analyzed using a handheld meter for pH and temperature, ion chromatography for major ions, ICP-MS for iron concentrations | ["POINT(163.4863 -77.5607)"] | ["POINT(163.4863 -77.5607)"] | false | false |
d15N and d18O of air in the WAIS Divide ice core
|
0538657 |
2023-10-20 | Severinghaus, Jeffrey P. |
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate |
Major gas components of air data set, containing d15N, d18O of O2, dO2/N2, and dAr/N2 from the WAIS Divide ice core at high resolution. These data are used to constrain surface temperature, biosphere oxygen cycling, and firn thickness through the past >60 kyr. | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
VSMOW-SLAP d170, d180, and 17O-excess data from WAIS Divide Ice Core Project, Siple Dome and Taylor Dome
|
None | 2023-10-13 | Steig, Eric J.; Schoenemann, Spruce | No project link provided | This data set contains the VSMOW-SLAP d170, d180, and 170-excess data from the WAIS Divide Ice Core Project, Siple Dome and Taylor Dome, along with the published and VSMOW-SLAP normalized d170, d180, and 170-excess for Vostok [Landais et al.2008], EPICA Dome C and Talos Dome [Wrinkler et al.,2012]. The data cover the Last Glacial Maximum (25-20 ka), through the Early Holocene (12-9 ka) and into present-day (past 2 kyr). | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Allan Hills CMC3 ice core d18Oatm, d15N, dO2/N2, dAr/N2, d40/36Ar, d40/38Ar 2021 & 2022
|
1744832 |
2022-11-22 | Severinghaus, Jeffrey P. |
Center for Oldest Ice Exploration Collaborative research: Snapshots of Early and Mid-Pleistocene Climate and Atmospheric Composition from the Allan Hills Blue Ice Area |
These data cover the penultimate glacial period (MIS 6) and parts of MIS5, in Allan Hills ice. The d18Oatm data are useful for dating the core, and the 15N is useful for inferring firn thickness. Importantly, the data have only been corrected for gas loss using published methods (i.e. Baggenstos et al. 2017), but not for recently recognized (and unpublished) effects of declining contemporary atmospheric O2/N2 due to fossil fuel burning. These changes unfortunately affect the La Jolla Air standard gas O2/N2 ratio that is used in our lab to make the measurements. Users of this data are encouraged to contact Jeff Severinghaus for help in making these novel corrections to the standard gas. | ["POINT(159.3562 -76.73243)"] | ["POINT(159.3562 -76.73243)"] | false | false |
Physical and geochemical data from shelf sediments near the Antartic Pennisula
|
2031442 |
2022-09-08 | Learman, Deric |
RAPID: Meta-genomic and Transcriptomic Investigation of Complex Organic Matter Degradation in Antarctic Benthic Sediments |
Shelf sediment samples were collected around the Antarctic Peninsular with the mega corer in 2020 (Nov. to Dec.). The sample locations and water depths are recorded in this dataset. These samples were used to collect data on organic matter (total organic carbon, total nitrogen, delta 13C (organic), delta 15N, and C to N ratios). Nutrient data (nitrate, nitrite, sulfate, and ammonia) and grain size analysis were collected on a subsample set (10). | [] | [] | false | false |
EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers: Infrared Stimulated Luminescence data
|
1946326 |
2022-02-09 | Doran, Peter; Stone, Michael |
EAGER: Refining glacial lake history in Taylor Valley, East Antarctica with alternative geochronometers |
Location and metadata of samples collected from perched delta deposits along modern stream channels in lower Taylor Valley. Sample collection used equipment and followed procedures from the Desert Research Institute Luminescence Laboratory in Reno, NV. | ["POLYGON((163.093642 -77.592484,163.1049267 -77.592484,163.1162114 -77.592484,163.1274961 -77.592484,163.1387808 -77.592484,163.1500655 -77.592484,163.1613502 -77.592484,163.1726349 -77.592484,163.1839196 -77.592484,163.1952043 -77.592484,163.206489 -77.592484,163.206489 -77.5986389,163.206489 -77.6047938,163.206489 -77.6109487,163.206489 -77.6171036,163.206489 -77.6232585,163.206489 -77.6294134,163.206489 -77.6355683,163.206489 -77.6417232,163.206489 -77.6478781,163.206489 -77.654033,163.1952043 -77.654033,163.1839196 -77.654033,163.1726349 -77.654033,163.1613502 -77.654033,163.1500655 -77.654033,163.1387808 -77.654033,163.1274961 -77.654033,163.1162114 -77.654033,163.1049267 -77.654033,163.093642 -77.654033,163.093642 -77.6478781,163.093642 -77.6417232,163.093642 -77.6355683,163.093642 -77.6294134,163.093642 -77.6232585,163.093642 -77.6171036,163.093642 -77.6109487,163.093642 -77.6047938,163.093642 -77.5986389,163.093642 -77.592484))"] | ["POINT(163.1500655 -77.6232585)"] | false | false |
LMG13-11 JKC-1 Paleoceanographic data
|
0732625 1433140 |
2021-11-15 | Shevenell, Amelia |
Collaborative Research in IPY: Abrupt Environmental Change in the Larsen Ice Shelf System, a Multidisciplinary Approach -- Cryosphere and Oceans |
This data set contains an age vs depth model and measurements of magnetic susceptibility, benthic foraminifera Bulimina aculeata d18O and d13C, bulk sediment GDGT data, and diatom assemblage data from USAP LMG13-11 JKC-1 sediment core (0-100 cm) archived at the Oregon State University ACC repository. All stable isotope and GDGT measurements were made at the University of South Florida College of Marine Science. Diatom assemblages were counted at Colgate University. The data set includes all replicate measurements. Details of the entire data set and all relevant methods are provided in Browne et al (submitted, 2021) | ["POLYGON((-69 -58,-67.7 -58,-66.4 -58,-65.1 -58,-63.8 -58,-62.5 -58,-61.2 -58,-59.9 -58,-58.6 -58,-57.3 -58,-56 -58,-56 -59,-56 -60,-56 -61,-56 -62,-56 -63,-56 -64,-56 -65,-56 -66,-56 -67,-56 -68,-57.3 -68,-58.6 -68,-59.9 -68,-61.2 -68,-62.5 -68,-63.8 -68,-65.1 -68,-66.4 -68,-67.7 -68,-69 -68,-69 -67,-69 -66,-69 -65,-69 -64,-69 -63,-69 -62,-69 -61,-69 -60,-69 -59,-69 -58))"] | ["POINT(-62.5 -63)"] | false | false |
Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica
|
1443386 |
2020-10-11 | Ciriani, Yanina; Emslie, Steven D. |
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
Many types of animal tissues are increasingly being used for stable isotope analysis, with their application dependent on the time frame they reflect and their availability for collection. Here, we investigated the isotopic values (δ13C and δ15N) of four tissues (feather, skin, toenail, and bone) collected from fledgling-period chick carcasses of three species of pygoscelid penguins to compare the variability and accuracy of the data among tissues. Samples were collected at 25 de Mayo/King George Island during the 2017/18 austral summer. Chick carcasses are commonly found at active penguin colonies, and “opportunistic sampling” can easily be performed without disturbing nesting penguins. A total of 25–36 carcasses per species were sampled at active colonies of Adélie Pygoscelis adeliae, Gentoo P. papua, and Chinstrap P. antarcticus penguins. A linear mixed model showed that δ13C values varied significantly between tissues, presumably due to tissue-specific isotopic discrimination. In contrast, the only tissue with significantly different δ15N values was toenail. Stable isotope data revealed dietary differences among species, with Gentoo Penguins having higher average isotopic values in tissues compared to Adélie and Chinstrap penguins. In addition, Chinstrap Penguins showed a consistent, but not statistically significant, trend in having higher δ13C values compared to Adélie Penguins. Gentoo Penguins displayed the highest isotopic variability of any species for all tissues. Isotopic composition was most variable in skin in all three species making skin the least reliable tissue for isotope analysis, whereas isotopic values were least variable in toenails. Comparison of isotopic values between two bones (tibiotarsus and coracoid) showed no significant differences in isotopic values, indicating that when the same bone is not available for sampling from carcasses, sampling of any major skeletal element is likely to provide a meaningful comparison. These results allow for more informed opportunistic sampling to accurately estimate and compare penguin diet among species and between ancient and active colonies. | ["POLYGON((-58.62 -62.257,-58.6199 -62.257,-58.6198 -62.257,-58.6197 -62.257,-58.6196 -62.257,-58.6195 -62.257,-58.6194 -62.257,-58.6193 -62.257,-58.6192 -62.257,-58.6191 -62.257,-58.619 -62.257,-58.619 -62.2571,-58.619 -62.2572,-58.619 -62.2573,-58.619 -62.2574,-58.619 -62.2575,-58.619 -62.2576,-58.619 -62.2577,-58.619 -62.2578,-58.619 -62.2579,-58.619 -62.258,-58.6191 -62.258,-58.6192 -62.258,-58.6193 -62.258,-58.6194 -62.258,-58.6195 -62.258,-58.6196 -62.258,-58.6197 -62.258,-58.6198 -62.258,-58.6199 -62.258,-58.62 -62.258,-58.62 -62.2579,-58.62 -62.2578,-58.62 -62.2577,-58.62 -62.2576,-58.62 -62.2575,-58.62 -62.2574,-58.62 -62.2573,-58.62 -62.2572,-58.62 -62.2571,-58.62 -62.257))"] | ["POINT(-58.6195 -62.2575)"] | false | false |
Resampling of Deep Polar Ice Cores using Information Theory
|
1043167 |
2020-07-27 | Jones, Tyler R.; Morris, Valerie; Garland, Joshua; Vaughn, Bruce; White, James |
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
The original water stable isotope data for the WAIS Divide Deep Ice Core was generated under the University of Colorado INSTAAR Stable Isotope Lab (NSF Award# 1443328). This data set contains high-resolution dD and d18O data for the West Antarctic Ice Sheet (WAIS) Divide Ice core. Drilling was initiated in 2006 and completed in 2011, and subsequent analyses on the ice were performed at the University of Colorado INSTAAR Stable Isotope Lab using Continuous Flow Analysis (CFA), completed in 2015 and described in Jones et al. (2017). The targeted resampling of the WAIS Divide Ice core (1035.4 to 1368.2 m) was completed in 2019 (NSF OPP - Antarctic Glaciology 1807522) to replace data analyzed on an older generation Laser Absorption Spectroscopy instrument. The resampling interval was identified using information theory (Garland and Jones et al. 2018). | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Carbon monoxide mixing ratios and stable isotopic values, SPICE
|
1443482 |
2020-07-09 | Mak, John |
Collaborative Research: Using Stable Isotopes to Constrain the Atmospheric Carbon Monoxide Budget over the Last 20,000 Years |
Data from measurement of CO mixing ratios and stable isotopes from the South Pole Ice Core for the first ca 10,000 years BP | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Mid-Holocene high-resolution water isotope time series for the WAIS Divide ice core
|
1807522 |
2020-05-26 | Morris, Valerie; Jones, Tyler R.; Vaughn, Bruce; White, James |
Collaborative Research: Targeted resampling of deep polar ice cores using information theory |
The original water stable isotope data for the WAIS Divide Deep Ice Core was generated under the University of Colorado INSTAAR Stable Isotope Lab (NSF Award# 1443328). This data set contains high-resolution dD and d18O data for the West Antarctic Ice Sheet (WAIS) Divide Ice core. Drilling was initiated in 2006 and completed in 2011, and subsequent analyses on the ice were performed at the University of Colorado INSTAAR Stable Isotope Lab using Continuous Flow Analysis (CFA). The targeted resampling of the WAIS Divide Ice core (1035.4 - 1368.2m) occurred for this grant (NSF OPP - Antarctic Glaciology 1807522) to replace data analyzed on an older generation Laser Absorption Spectroscopy instrument. The resampling interval was identified using information theory. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Aerial survey of Explorers Cove shoreline, late January 2005
|
1341612 |
2019-12-05 | Bowser, Samuel; Alexander, Steve |
Assembling and Mining the Genomes of Giant Antarctic Foraminifera |
Photographs taken from helo operating at 500 ft of the shoreline bounding Explorers Cove in late January, illustrating typical sea ice conditions, extent of shoreline moat, ephemeral snow melt input, nearshore small ponds and tide pools, Commonwealth and Wales Glacier deltas, evaporite deposits, and landslides along the northern/northeastern slopes of Mount Barnes. | ["POINT(163.5117 -77.57623)"] | ["POINT(163.5117 -77.57623)"] | false | false |
Diatom Oxygen Isotope Evidence of Pliocene (~4.68 to 3.44 Ma) Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography
|
1443420 |
2019-10-27 | Dodd, Justin; Abbott, Tirzah |
Diatom and Oxygen Isotope Evidence of Pliocene Antarctic Ice Sheet Dynamics and Ross Sea Paleoceanography |
The Andrill-1B (AND-1B) sediment core from under the Ross Ice Shelf in McMurdo Sound, Antarctica, recovered a mid to late Pliocene (~4.68 to 3.44 Ma) age diatomite unit with d18Odiatom values that range from +32.6 to +37.6 ‰ (n=50 | ["POINT(167.083333 -77.888889)"] | ["POINT(167.083333 -77.888889)"] | false | false |
Radiocarbon dates from pygoscelid penguin tissues excavated at Stranger Point, King George Island, Antarctic Peninsula
|
1826712 1443386 1443585 1443424 |
2019-09-24 | Emslie, Steven D. |
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
Radiocarbon dates from pygoscelid penguin tissues from ornithogenic soils and beach deposits at Stranger Point, King George (25 de Mayo) Island, Antarctic Peninsula. Uncorrected dates are in radiocarbon years before present (BP); calibrated dates were corrected for the marine carbon reservoir effect (delta R = 700 +/- 50 years) and calibrated with Calib 7.0.4 to provide 2σ ranges in calendar years BP. All dates except were completed at the Woods Hole National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility and are designated with OS numbers. Localities include ancient penguin breedings sites (mounds, M), active colonies (I9, B3), and a mid-Holocene marine beach deposit (Pingfo 1). | ["POLYGON((-59 -62,-58.9 -62,-58.8 -62,-58.7 -62,-58.6 -62,-58.5 -62,-58.4 -62,-58.3 -62,-58.2 -62,-58.1 -62,-58 -62,-58 -62.1,-58 -62.2,-58 -62.3,-58 -62.4,-58 -62.5,-58 -62.6,-58 -62.7,-58 -62.8,-58 -62.9,-58 -63,-58.1 -63,-58.2 -63,-58.3 -63,-58.4 -63,-58.5 -63,-58.6 -63,-58.7 -63,-58.8 -63,-58.9 -63,-59 -63,-59 -62.9,-59 -62.8,-59 -62.7,-59 -62.6,-59 -62.5,-59 -62.4,-59 -62.3,-59 -62.2,-59 -62.1,-59 -62))"] | ["POINT(-58.5 -62.5)"] | false | false |
South Pole (SPICECORE) 15N, 18O, O2/N2 and Ar/N2
|
1443710 |
2019-02-02 | Severinghaus, Jeffrey P. |
Collaborative Research: Inert Gas and Methane Based Climate Records throughout the South Pole Deep Ice Core |
This data set includes major atmospheric gas and gas isotope data from the SPICECORE project, which recovered a 1750-m ice core at the South Pole in 2015. 15N, 18O of O2, O2/N2, and Ar/N2 are included. | ["POINT(0 -90)"] | ["POINT(0 -90)"] | false | false |
Stable water isotope data for the surface samples collected at the Allan Hills Blue ice area
|
1443263 1443306 |
2018-10-17 | Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
Stable water isotope data for the surface ice samples (listed as point numbers coordinates provided) collected at the Allan Hills Blue ice area have been generated under a collaborative effort by the University of Maine Climate Change Institute (NSF Award#1443306) and Princeton University (NSF Award# 1443263). This data set contains stable isotope data (dD, d18O) of meltwater samples collected from the area(76.73165 to 76.73348 S, 159.35343 to 159.42112 E). | ["POLYGON((159.35343 -76.73165,159.360199 -76.73165,159.366968 -76.73165,159.373737 -76.73165,159.380506 -76.73165,159.387275 -76.73165,159.394044 -76.73165,159.400813 -76.73165,159.407582 -76.73165,159.414351 -76.73165,159.42112 -76.73165,159.42112 -76.731833,159.42112 -76.732016,159.42112 -76.732199,159.42112 -76.732382,159.42112 -76.732565,159.42112 -76.732748,159.42112 -76.732931,159.42112 -76.733114,159.42112 -76.733297,159.42112 -76.73348,159.414351 -76.73348,159.407582 -76.73348,159.400813 -76.73348,159.394044 -76.73348,159.387275 -76.73348,159.380506 -76.73348,159.373737 -76.73348,159.366968 -76.73348,159.360199 -76.73348,159.35343 -76.73348,159.35343 -76.733297,159.35343 -76.733114,159.35343 -76.732931,159.35343 -76.732748,159.35343 -76.732565,159.35343 -76.732382,159.35343 -76.732199,159.35343 -76.732016,159.35343 -76.731833,159.35343 -76.73165))"] | ["POINT(159.387275 -76.732565)"] | false | false |
Stable water isotope data for the AH-1502 ice core drilled at the Allan Hills Blue ice area
|
1443306 1443263 |
2018-10-17 | Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
Stable water isotope data for the ice core drilled at the Allan Hills Blue ice area have been generated under a collaborative effort by the University of Maine Climate Change Institute (NSF Award#1443306) and Princeton University (NSF Award# 1443263). This data set contains stable isotope data (dD, d18O) of meltwater samples collected from the ice core AH-1502 (76.73286 S, 159.35507 E) was drilled in 2015-16 field season to 197 meters below the surface. | ["POINT(159.35507 -76.73286)"] | ["POINT(159.35507 -76.73286)"] | false | false |
Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area
|
1443306 1443263 |
2018-10-16 | Kurbatov, Andrei V.; Mayewski, Paul A.; Introne, Douglas; Yan, Yuzhen |
Collaborative Research: Window into the World with 40,000-year Glacial Cycles from Climate Records in Million Year-old Ice from the Allan Hills Blue Ice Area |
Stable water isotope data for the AH-1503 ice core drilled at the Allan Hills Blue ice area have been generated under a collaborative effort by the University of Maine Climate Change Institute (NSF Award#1443263) and Princeton University (NSF Award# 1443263). This data set contains stable isotope data (dD, d18O) of meltwater samples collected from the ice core AH-1503 (76.73243 S, 159.3562 E). Ice core site AH-1503 used the same borehole as AH- BIT58 drilled down to 124 m during the 2011-12 field season. All drilling was conducted with a 3" Eclipse drill (Ice Drilling Design and Operations (IDDO)). | ["POINT(159.3562 -76.73243)"] | ["POINT(159.3562 -76.73243)"] | false | false |
WAIS Divide d18Oatm and Siple Dome/WAIS Divide composite and individual delta epsilon LAND
|
0538657 |
2017-08-18 | Seltzer, Alan; Severinghaus, Jeffrey P. |
Nitrogen and Oxygen Gas Isotopes in the WAIS Divide Ice Core as Constraints on Chronology, Temperature, and Accumulation Rate |
This data set contains measurements of d18Oatm (d18O of O2), d15N, dAr/N2, and dO2/N2 in gas bubbles from the WAIS Divide ice core. The time resolution is variable throughout the record but is ~100 years on average (from 65 ka to present). All measurements were made in the Noble Gas Isotope Laboratory at Scripps Institution of Oceanography (La Jolla, CA). The data set includes all replicate measurements as well as replicate-mean values and a calculation of measurement precision (pooled standard deviation). The second sheet of this data set includes fitted d18Oatm curves for the past 50 ka from both the WAIS Divide and Siple Dome Antarctic ice cores, both on the WD2014 timescale (Buizert et al., 2015). The second sheet also includes calculations of the time derivative of d18Oatm and d e LAND in both ice cores individual as well as in a composite record. Details of the entire data set and all relevant methods are provided in Seltzer et al., 2017. | ["POLYGON((-113 -79,-112.8 -79,-112.6 -79,-112.4 -79,-112.2 -79,-112 -79,-111.8 -79,-111.6 -79,-111.4 -79,-111.2 -79,-111 -79,-111 -79.1,-111 -79.2,-111 -79.3,-111 -79.4,-111 -79.5,-111 -79.6,-111 -79.7,-111 -79.8,-111 -79.9,-111 -80,-111.2 -80,-111.4 -80,-111.6 -80,-111.8 -80,-112 -80,-112.2 -80,-112.4 -80,-112.6 -80,-112.8 -80,-113 -80,-113 -79.9,-113 -79.8,-113 -79.7,-113 -79.6,-113 -79.5,-113 -79.4,-113 -79.3,-113 -79.2,-113 -79.1,-113 -79))"] | ["POINT(-112 -79.5)"] | false | false |
WD2014: Timescale for WAIS Divide Core 2006 A (WDC-06A)
|
0944197 |
2017-03-28 | Fudge, T. J. |
Collaborative Research: Establishing the Chronology and Histories of Accumulation and Ice Dynamics for the WAIS Divide Core |
The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ~68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP) have been dated using annual-layer counting. Here we present a chronology for the deep part of the core (67.8-31.2 ka BP), which is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of d15N-N2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. Internally consistent solutions can be found only when assuming little to no influence of impurity content on densification rates, contrary to a recently proposed hypothesis. We synchronize the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu Cave speleothem record. The small Delta age at WD provides valuable opportunities to investigate the timing of atmospheric greenhouse gas variations relative to Antarctic climate, as well as the interhemispheric phasing of the \"bipolar seesaw\". We present the WD2014 chronology for the upper part (0-2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposition of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5% of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1% of the age at three abrupt climate change events between 27 and 31ka. WD2014 has consistently younger ages than Greenland ice core chronologies during most of the Holocene. For the Younger Dryas-Preboreal transition (11.595 ka; 24 years younger) and the Bolling-Allerod Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity, atmospheric mineral dust, and atmospheric methane concentrations. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core
|
1043167 |
2016-01-01 | White, James; Morris, Valerie; Vaughn, Bruce; Jones, Tyler R. |
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public. | ["POINT(-112.08 -79.47)"] | ["POINT(-112.08 -79.47)"] | false | false |
The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive
|
1245821 |
2016-01-01 | Brook, Edward J. |
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive |
This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, and delta 18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, delta 13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of delta 13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica. | ["POINT(162.167 -77.733)"] | ["POINT(162.167 -77.733)"] | false | false |
Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA)
|
0838849 |
2014-01-01 | Bender, Michael |
Collaborative Research: Exploring A 2 Million + Year Ice Climate Archive-Allan Hills Blue Ice Area (2MBIA) |
This award supports a project to generate an absolute timescale for the Allan Hills Blue Ice Area (BIA), and then to reconstruct details of past climate changes and greenhouse gas concentrations for certain time periods back to 2.5 Ma. Ice ages will be determined by applying emerging methods for absolute and relative dating of trapped air bubbles (based on Argon-40/Argon-38, delta-18O of O2, and the O2/N2 ratio). To demonstrate the potential of the Allan Hills BIAs as a paleoclimate archive trenches and ice cores will be collected for age intervals corresponding to 110-140 ka, 1 Ma, and 2.5 Ma. During the proposed two field seasons a total of 6x100 m and additional 15 m cores will be combined with trenching. The intellectual merit of the proposed activity is that the results of this work will extend the landmark work of EPICA and other deep ice coring efforts, which give records dating back to 0.8 Ma, and will complement work planned by IPICS to drill a continuous Antarctic ice core extending to 1.5 Ma. The results will help to advance understanding of major climate regimes and transitions that took place between 0-2.5 Ma, including the 40 kyr world and the mid-Pleistocene climate transition. A major long-term scientific goal is to provide a transformative approach to the collection of paleoclimate records by establishing an 'International Climate Park' in the Allan Hills BIA that would enable sampling of large quantities of known age ice as old as 2.5 Ma, by any interested American or foreign investigator. The broader impacts resulting from the proposed activity include training students who are well versed in advanced field, laboratory and numerical modeling methods combining geochemistry, glaciology, and paleoclimatology. We will include material relevant to our proposed research in our ongoing efforts in local education and in our outreach efforts for media. The University of Maine already has cyberinfrastructure, using state of the art web-based technology, which can provide a wide community of scientists with fast access to the results of our research. The work will contribute to the broad array of climate change studies that is informing worldwide understanding of natural and anthropogenic forced climate change, and the options for responding. This award has field work in Antarctica. | ["POLYGON((159.16667 -76.66667,159.19167 -76.66667,159.21667 -76.66667,159.24167 -76.66667,159.26667 -76.66667,159.29167 -76.66667,159.31667 -76.66667,159.34167 -76.66667,159.36667 -76.66667,159.39167 -76.66667,159.41667 -76.66667,159.41667 -76.673336,159.41667 -76.680002,159.41667 -76.686668,159.41667 -76.693334,159.41667 -76.7,159.41667 -76.706666,159.41667 -76.713332,159.41667 -76.719998,159.41667 -76.726664,159.41667 -76.73333,159.39167 -76.73333,159.36667 -76.73333,159.34167 -76.73333,159.31667 -76.73333,159.29167 -76.73333,159.26667 -76.73333,159.24167 -76.73333,159.21667 -76.73333,159.19167 -76.73333,159.16667 -76.73333,159.16667 -76.726664,159.16667 -76.719998,159.16667 -76.713332,159.16667 -76.706666,159.16667 -76.7,159.16667 -76.693334,159.16667 -76.686668,159.16667 -76.680002,159.16667 -76.673336,159.16667 -76.66667))"] | ["POINT(159.29167 -76.7)"] | false | false |
Methane Isotopes in South Pole Firn Air, 2008
|
0739491 |
2011-01-01 | Sowers, Todd A. |
Collaborative Research: Methane Isotopes, Hydrocarbons, and other Trace Gases in South Pole Firn Air |
This data set contains depth profiles for delta carbon-13 (δ13C) and delta deuterium (δD) of methane (CH<sub>4</sub>) in South Pole firn air. The investigators obtained air samples from two boreholes during December 2008 and January 2009, and subsequently determined isotope ratios at 18 depths. The profiles represent a roughly 100-year history of the isotopic composition of CH<sub>4</sub> at South Pole Station (no depth-age model provided). Data are available via FTP as an ASCII text file (.txt) and a Microsoft Excel file (.xlsx). | ["POLYGON((-180 90,-144 90,-108 90,-72 90,-36 90,0 90,36 90,72 90,108 90,144 90,180 90,180 72,180 54,180 36,180 18,180 0,180 -18,180 -36,180 -54,180 -72,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -72,-180 -54,-180 -36,-180 -18,-180 0,-180 18,-180 36,-180 54,-180 72,-180 90))"] | ["POINT(0 -89.999)"] | false | false |
Trapped Gas Composition and Chronology of the Vostok Ice Core
|
0230260 |
2007-07-10 | Bender, Michael; Suwa, Makoto |
Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core |
This data set includes a time scale for the Vostok ice core, retrieved from Vostok Station on the East Antarctic Plateau. This chronology is derived by orbitally tuning to molecular oxygen to nitrogen (O<sub>2</sub>/N<sub>2</sub>) ratios in occluded air for depths deeper than 1550 m (greater than 112,000 years old), and by gas correlation to the Greenland Ice Sheet Project 2 (GISP2) chronology for the ice core section that is shallower than 1422 m (less than 102,000 years old). Because of poor gas preservation in air bubbles in shallower depths, investigators could only constrain the Vostok chronology for the section deeper than 1550 m by O<sub>2</sub>/N<sub>2</sub>. Thus for the shallower section of the core, they synchronized the Vostok delta oxygen-18 (δ<sup>18</sup>O) and methane (CH<sub>4</sub>) measurements to those of the GISP2 to obtain the chronology (see Bender, et al. 2006). Note, CH<sub>4</sub> data are not included in this data set. Investigators analyzed the O<sub>2</sub>/N<sub>2</sub> and the<em><strong> </strong></em>δ<sup>18</sup>O record ratios for approximately the past 115,000 to 400,000 years in the Vostok ice core. They combined new measurements for O<sub>2</sub>/N<sub>2</sub> and δ<sup>18</sup>O with data from Bender (2002) and Petit, et al. (1999), respectively. Data are in Microsoft Excel format and are available via FTP. | ["POINT(106.8 -72.4667)"] | ["POINT(106.8 -72.4667)"] | false | false |
Carbon-13 Isotopic Composition of Atmospheric Methane in Firn Air, South Pole and Siple Dome, Antarctica
|
9526556 |
2007-07-09 | Sowers, Todd A. |
Constructing Paleoatmospheric Records of the Isotopic Composition of Methane and Nitrous Oxide |
This data set includes records of the delta carbon-13 (δ<sup>13</sup>C) of methane (CH<sub>4</sub>) in firn air from the South Pole and trapped in bubbles in a short ice core from Siple Dome, Antarctica. Using two firn air samples, one from January 1995 and the other from January 2001, investigators reconstructed records of the isotopic composition of paleoatmospheric methane covering the last 2 centuries, from 1820 to 2001. Data are in Microsoft Excel and Microsoft Word formats and are available via FTP. | ["POINT(-148.3023 -81.403)"] | ["POINT(-148.3023 -81.403)"] | false | false |
Atmospheric CO2 Trapped in the Ice Core from Siple Dome, Antarctica
|
9980691 |
2003-12-11 | Ahn, Jinho; Wahlen, Martin; Deck, Bruce |
CO2 and Delta 13CO2 in Antarctic Ice Cores |
These data are CO2 concentrations of the air occulded in Siple Dome ice core, Antarctica. The study was conducted between January 2001 and March 2003 on a deep ice core from Siple Dome Core A, located at 81.66 S, 148.82 W. | ["POINT(-148.82 -81.66)"] | ["POINT(-148.82 -81.66)"] | false | false |