{"dp_type": "Dataset", "free_text": "Bioacoustics"}
[{"awards": "1644196 Cziko, Paul", "bounds_geometry": ["POINT(166.6645 -77.851)"], "date_created": "Tue, 29 Dec 2020 00:00:00 GMT", "description": "Broadband underwater acoustic recordings from the McMurdo Oceanographic Observatory mooring near the seaward terminus of the McMurdo Station seawater intake jetty. An omnidirectional Ocean Sonics icListen hydrophone (SB2-ETH, SN 1713) recorded continuously at 512 kilosamples/second (256 kHz Nyquist frequency; 24 bit) for 2 years. The hydrophone was mounted vertically on a steel strut (insulated with rubber sheet) at about 70 cm above the mud/gravel seabed at 21m deep, with the sloping 45\u00b0 rubble face of the jetty just behind the hydrophone. Temporal coverage is \u003e90%, with gaps and truncated files arising due to network and power outages and software bugs. The audio recordings are 10 minute WAV files, compressed using the lossless FLAC code (Free Lossless Audio Codec, xiph.org; about 33MB of data/minute compressed; 100MB/min uncompressed). The hydrophone was under thick (to 3 m) sea ice cover for the majority of the dataset. The majority of the recorded biological sounds were produced by Weddell seals. Orca were present intermittently (~10 days total) in January-March in both summers. Known non-biological sounds include irregular low-intensity, broad-spectrum clicks and cracks from the sea ice cover, occasional wind noise, a 1.5-s gurgle with components to 200kHz every 90s from the CTD\u2019s pump, a broad-spectrum mechanical sound for 3 min every 4 h from the observatory\u0027s underwater camera cleaning system, low-intensity whines (about 18, 58, 83, and 130 kHz, though variable over the dataset) thought to be from the station seawater pumps (\u003e100 m away within the jetty\u2019s well casing), and intermittent noises from tracked-vehicles and helicopters (September\u2013February), SCUBA divers (October\u2013December), and ships (January). Given hosting limitations, only every 6th file (roughly 10min/hour) has been archived here. Additional data can be obtained by contacting the primary author of the dataset, who will maintain it for as long as possible. Audio spectrogram images (PNGs) at three frequency ranges (three stacked panels per image, upper limits of 2.5, 25, and 256 kHz) from the entire dataset (all data, not subsampled) are also archived separately.", "east": 166.6645, "geometry": ["POINT(166.6645 -77.851)"], "keywords": "Antarctica; Bioacoustics; Biota; Hydroacoustics; Killer Whales; Leptonychotes Weddellii; McMurdo Sound; Oceans; Orcinus Orca; Sea Ice; Weddell Seal; Whales", "locations": "Antarctica; McMurdo Sound", "north": -77.851, "nsf_funding_programs": "Antarctic Instrumentation and Support", "persons": "Cziko, Paul", "project_titles": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010147", "repository": "USAP-DC", "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.851, "title": "Long-term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019)", "uid": "601416", "west": 166.6645}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Long-term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019)
|
1644196 |
2020-12-29 | Cziko, Paul |
Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes |
Broadband underwater acoustic recordings from the McMurdo Oceanographic Observatory mooring near the seaward terminus of the McMurdo Station seawater intake jetty. An omnidirectional Ocean Sonics icListen hydrophone (SB2-ETH, SN 1713) recorded continuously at 512 kilosamples/second (256 kHz Nyquist frequency; 24 bit) for 2 years. The hydrophone was mounted vertically on a steel strut (insulated with rubber sheet) at about 70 cm above the mud/gravel seabed at 21m deep, with the sloping 45° rubble face of the jetty just behind the hydrophone. Temporal coverage is >90%, with gaps and truncated files arising due to network and power outages and software bugs. The audio recordings are 10 minute WAV files, compressed using the lossless FLAC code (Free Lossless Audio Codec, xiph.org; about 33MB of data/minute compressed; 100MB/min uncompressed). The hydrophone was under thick (to 3 m) sea ice cover for the majority of the dataset. The majority of the recorded biological sounds were produced by Weddell seals. Orca were present intermittently (~10 days total) in January-March in both summers. Known non-biological sounds include irregular low-intensity, broad-spectrum clicks and cracks from the sea ice cover, occasional wind noise, a 1.5-s gurgle with components to 200kHz every 90s from the CTD’s pump, a broad-spectrum mechanical sound for 3 min every 4 h from the observatory's underwater camera cleaning system, low-intensity whines (about 18, 58, 83, and 130 kHz, though variable over the dataset) thought to be from the station seawater pumps (>100 m away within the jetty’s well casing), and intermittent noises from tracked-vehicles and helicopters (September–February), SCUBA divers (October–December), and ships (January). Given hosting limitations, only every 6th file (roughly 10min/hour) has been archived here. Additional data can be obtained by contacting the primary author of the dataset, who will maintain it for as long as possible. Audio spectrogram images (PNGs) at three frequency ranges (three stacked panels per image, upper limits of 2.5, 25, and 256 kHz) from the entire dataset (all data, not subsampled) are also archived separately. | ["POINT(166.6645 -77.851)"] | ["POINT(166.6645 -77.851)"] | false | false |