IEDA
Project Information
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula
Description/Abstract
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).

The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding.

Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher.
Personnel
Person Role
Baker, Bill Investigator
Amsler, Charles Investigator
McClintock, James Co-Investigator
Funding
Antarctic Organisms and Ecosystems Award # 0838776
Antarctic Organisms and Ecosystems Award # 0838773
Antarctic Organisms and Ecosystems Award # 0442857
Antarctic Organisms and Ecosystems Award # 0442769
Data Management Plan
None in the Database
Product Level:
0 (raw data)
Publications
  1. Von Salm, J. L., Wilson, N. G., Vesely, B. A., Kyle, D. E., Cuce, J., & Baker, B. J. (2014). Shagenes A and B, New Tricyclic Sesquiterpenes Produced by an Undescribed Antarctic Octocoral. Organic Letters, 16(10), 2630–2633. (doi:10.1021/ol500792x)
  2. Thomas, S. A. L., Sanchez, A., Kee, Y., Wilson, N. G., & Baker, B. J. (2019). Bathyptilones: Terpenoids from an Antarctic Sea Pen, Anthoptilum grandiflorum (Verrill, 1879). Marine Drugs, 17(9), 513. (doi:10.3390/md17090513)
  3. Shilling, A. J., Witowski, C. G., Maschek, J. A., Azhari, A., Vesely, B. A., Kyle, D. E., … Baker, B. J. (2020). Spongian Diterpenoids Derived from the Antarctic Sponge Dendrilla antarctica Are Potent Inhibitors of the Leishmania Parasite. Journal of Natural Products, 83(5), 1553–1562. (doi:10.1021/acs.jnatprod.0c00025)
  4. Knestrick, M. A., Wilson, N. G., Roth, A., Adams, J. H., & Baker, B. J. (2019). Friomaramide, a Highly Modified Linear Hexapeptide from an Antarctic Sponge, Inhibits Plasmodium falciparum Liver-Stage Development. Journal of Natural Products, 82(8), 2354–2358. (doi:10.1021/acs.jnatprod.9b00362)
  5. Thomas, S. A. L., von Salm, J. L., Clark, S., Ferlita, S., Nemani, P., Azhari, A., … Baker, B. J. (2017). Keikipukalides, Furanocembrane Diterpenes from the Antarctic Deep Sea Octocoral Plumarella delicatissima. Journal of Natural Products, 81(1), 117–123. (doi:10.1021/acs.jnatprod.7b00732)
  6. Von Salm, J. L., Witowski, C. G., Fleeman, R. M., McClintock, J. B., Amsler, C. D., Shaw, L. N., & Baker, B. J. (2016). Darwinolide, a New Diterpene Scaffold That Inhibits Methicillin-Resistant Staphylococcus aureus Biofilm from the Antarctic Sponge Dendrilla membranosa. Organic Letters, 18(11), 2596–2599. (doi:10.1021/acs.orglett.6b00979)
  7. Aumack, C. F., Lowe, A. T., Amsler, C. D., Amsler, M. O., McClintock, J. B., & Baker, B. J. (2016). Gut content, fatty acid, and stable isotope analyses reveal dietary sources of macroalgal-associated amphipods along the western Antarctic Peninsula. Polar Biology, 40(7), 1371–1384. (doi:10.1007/s00300-016-2061-4)
  8. Amsler, C. D., McClintock, J. B., & Baker, B. J. (2013). Chemical mediation of mutualistic interactions between macroalgae and mesograzers structure unique coastal communities along the western Antarctic Peninsula. Journal of Phycology, 50(1), 1–10. (doi:10.1111/jpy.12137)
  9. Alison E. Murray, Nicole E. Avalon, Lucas G. Bishop, Patrick S.G. Chain, Karen W. Davenport, Erwan Delage, Armand K.E. Dichosa, Damien Eveillard, Mary L. Higham, Sofia Kokkaliari, Chien-Chi Lo, Christian S. Riesenfeld, Ryan Young and Bill J. Baker. Uncovering the core microbiome and distributions of palmerolide in Synoicum adareanum across the Anvers Island archipelago, Antarctica. Mar. Drugs 2020, 18, 298. (doi:10.3390/md18060298)
  10. McDowell, R. E., Amsler, M. O., Li, Q., Lancaster, J. R., & Amsler, C. D. (2015). The immediate wound-induced oxidative burst of Saccharina latissima depends on light via photosynthetic electron transport. Journal of Phycology, 51(3), 431–441. (doi:10.1111/jpy.12302)
  11. Murray, A. E., Lo, C.-C., Daligault, H. E., Avalon, N. E., Read, R. W., Davenport, K. W., … Chain, P. S. G. (2021). Discovery of an Antarctic Ascidian-Associated Uncultivated Verrucomicrobia with Antimelanoma Palmerolide Biosynthetic Potential. mSphere. (doi:10.1128/msphere.00759-21)
  12. McDowell, R. E., Amsler, C. D., Dickinson, D. A., McClintock, J. B., & Baker, B. J. (2013). Reactive oxygen species and the Antarctic macroalgal wound response. Journal of Phycology, 50(1), 71–80. (doi:10.1111/jpy.12127)
  13. McDowell, R. E., Amsler, C. D., Amsler, M. O., Li, Q., & Lancaster, J. R. (2016). Control of grazing by light availability via light-dependent, wound-induced metabolites: The role of reactive oxygen species. Journal of Experimental Marine Biology and Ecology, 477, 86–91. (doi:10.1016/j.jembe.2016.01.011)
  14. Avalon, N. E., Murray, A. E., Daligault, H. E., Lo, C.-C., Davenport, K. W., Dichosa, A. E. K., … Baker, B. J. (2021). Bioinformatic and Mechanistic Analysis of the Palmerolide PKS-NRPS Biosynthetic Pathway From the Microbiome of an Antarctic Ascidian. Frontiers in Chemistry, 9. (doi:10.3389/fchem.2021.802574)
  15. Bucolo, P., Amsler, C. D., McClintock, J. B., & Baker, B. J. (2011). Palatability of the Antarctic rhodophyte Palmaria decipiens (Reinsch) RW Ricker and its endo/epiphyte Elachista antarctica Skottsberg to sympatric amphipods. Journal of Experimental Marine Biology and Ecology, 396(2), 202–206. (doi:10.1016/j.jembe.2010.10.023)
Platforms and Instruments

This project has been viewed 29 times since May 2019 (based on unique date-IP combinations)