IEDA
Project Information
Ice-Shelf Rift Propagation: Computational Simulation Using a Fracture Fracture Mechanics Approach
Description/Abstract
This award supports a project to develop computational models to simulate ice-shelf rift propagation using a combination of well-established ice-shelf creep-flow models and new crevasse models, based on linear elastic fracture mechanics (LEFM). The overall objective of the proposed work is to simulate rift propagation and eventual large iceberg calving,and place those processes within a larger ice sheet and climate context. The work will proceed in stages, first developing models of single-and multiple-crevasse propagation; then using those models to evaluate propagation sensitivity to various environmental conditions; and third developing models that incorporate both crevasse propagation and advection within an ice- shelf system. Model development will be guided by and evaluated according to satellite observations of rift propagation in several characteristic locations on Antarctic ice shelves. New numerical models of fracture in ice will have applications to many problems in glaciology. The research proposed here is directed toward large rift formation in ice shelves and subsequent iceberg calving. It is motivated by the need to understand observed changes in modern ice shelves,and their connection to climate. Where it has been sampled, the sedimentary record of the Weddell Sea sector implies Peninsular ice shelf variability on millennial time scales. The ability to simulate iceberg calving in a credible way will improve our ability to reproduce such events and place the complete cycle of ice shelf advance and retreat in an ice-dynamics context. That will, in turn, enable us to place ice-shelf cycles within the climate cycles that ultimately drive ice-sheet mass balance.
Personnel
Person Role
Hulbe, Christina Investigator
Funding
Antarctic Glaciology Award # 0125754
AMD - DIF Record(s)
Data Management Plan
None in the Database
Product Level:
Not provided
Platforms and Instruments

This project has been viewed 1 time since May 2019 (based on unique date-IP combinations)