IEDA
Project Information
Collaborative Research: Physical Properties of the WAIS Divide Deep Core
Program:
WAIS Divide Ice Core
Description/Abstract
0539578
Alley
This award supports a five-year collaborative project to study the physical-properties of the planned deep ice core and the temperature of the ice in the divide region of the West Antarctic Ice Sheet. The intellectual merit of the proposed research is to provide fundamental information on the state of the ice sheet, to validate the integrity of the climate record, to help reconstruct the climate record, and to understand the flow state and history of the ice sheet. This information will initially be supplied to other investigators and then to the public and to appropriate databases, and will be published in the refereed scientific literature. The objectives of the proposed research are to aid in dating of the core through counting of annual layers, to identify any exceptionally warm intervals in the past through counting of melt layers, to learn as much as possible about the flow state and history of the ice through measurement of size, shape and arrangements of bubbles, clathrate inclusions, grains and their c-axes, to identify any flow disturbances through these indicators, and to learn the history of snow accumulation and temperature from analyses of bubbles and borehole temperatures combined with flow modeling and use of data from other collaborators. These results will then be synthesized and communicated. Failure to examine cores can lead to erroneous identification of flow features as climate changes, so careful examination is required. Independent reconstruction of accumulation rate provides important data on climate change, and improves confidence in interpretation of other climate indicators. Borehole temperatures are useful recorders of temperature history. Flow state and history are important in understanding climate history and potential contribution of ice to sea-level change. By contributing to all of these and additional issues, the proposed research will be of considerable value. The broader impacts of the research include making available to the public improved knowledge on societally central questions involving abrupt climate change and sea-level rise. The project will also contribute to the education of advanced students, will utilize results in education of introductory students, and will make vigorous efforts in outreach, informal science education, and supplying information to policy-makers as requested, thus contributing to a more-informed society.
Personnel
Person Role
Fitzpatrick, Joan Investigator
Alley, Richard Investigator
Fegyveresi, John Co-Investigator
Clow, Gary D. Co-Investigator
Cuffey, Kurt M. Investigator
Cravens, Eric D. Co-Investigator
Funding
Antarctic Glaciology Award # 0539578
Antarctic Glaciology Award # 0539232
Data Management Plan
None in the Database
Product Level:
1 (processed data)
Publications
  1. Fegyveresi1, J.M., R.B. Alley, A. Muto, A.J. Orsi, and M.K. Spencer (in review). Surface formation, preservation, and history of low-porosity crusts at the WAIS Divide site, West Antarctica. The Cryosphere Diss. (doi:10.5194/tc-2016-155)
  2. Buizert, C., K.M. Cuffey, J.P. Severinghaus, D. Baggenstos, T.J. Fudge, E.J. Steig, T.A. Sowers, E.J. Brook, R.H. Rhodes, H. Cheng, L.R. Edwards, M. Sigl, J.R. McConnell, and K.C. Taylor (2015). The WAIS Divide deep ice core WD2014 chronology - Part 1: Methane synchronization (68-31 ka BP) and the gas age-ice age difference, Clim. Past, 11, 153-173, doi:10.5194/cp-11-153-2015. (doi:10.5194/cp-11-153-2015)
  3. Cuffey, K.M., Clow, G.D., Steig, E.J., Buizert, C., Fudge, T.J., Koutnik, M., Waddington, E.D., Alley, R.A. and Severinghaus, J.P. 2016. Deglacial temperature history of West Antarctica, Proceedings of the National Academy of Sciences, 113(50), p. 14249-1425. doi: 10.1073/pnas.1609132113. (doi:10.1073/pnas.1609132113)
  4. Koutnik, M. R., Fudge, T. J., Conway, H., Waddington, E. D., Neumann, T. A., Cuffey, K. M., … Taylor, K. C. (2016). Holocene accumulation and ice flow near the West Antarctic Ice Sheet Divide ice core site. Journal of Geophysical Research: Earth Surface, 121(5), 907–924. (doi:10.1002/2015jf003668)
  5. Buizert, C., Cuffey, K. M., Severinghaus, J. P., Baggenstos, D., Fudge, T. J., Steig, E. J., … Taylor, K. C. (2014). The WAIS-Divide deep ice core WD2014 chronology – Part 2: Methane synchronization (68–31 ka BP) and the gas age-ice age difference. Climate of the Past Discussions, 10(4), 3537–3584. (doi:10.5194/cpd-10-3537-2014)
  6. Fegyveresi, J. M., Alley, R. B., Fitzpatrick, J. J., Cuffey, K. M., McConnell, J. R., Voigt, D. E., … Stevens, N. T. (2016). Five millennia of surface temperatures and ice core bubble characteristics from the WAIS Divide deep core, West Antarctica. Paleoceanography, 31(3), 416–433. (doi:10.1002/2015pa002851)
  7. Fegyveresi, J. M., Alley, R. B., Muto, A., Orsi, A. J., & Spencer, M. K. (2018). Surface formation, preservation, and history of low-porosity crusts at the WAIS Divide site, West Antarctica. The Cryosphere, 12(1), 325–341. (doi:10.5194/tc-12-325-2018)
  8. Garland, J., Jones, T. R., Neuder, M., White, J. W., & Bradley, E. (2019). An information-theoretic approach to extracting climate signals from deep polar ice cores. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(10), 101105. (doi:10.1063/1.5127211)

This project has been viewed 73 times since May 2019 (based on unique date-IP combinations)